Log in

Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress

  • Original Paper
  • Published:
Photosynthetica

Abstract

Salt stress is one of the most critical factors hindering the growth and development of plants. Paclobutrazol (PBZ) is widely used to minimize this problem in agriculture because it can induce salt stress tolerance in plants. This study investigated the effects of PBZ on salt tolerance of seedlings from two Chinese bayberry cultivars (i.e., Wangdao and Shenhong). Plants were treated with three salt concentrations (0, 0.2, and 0.4 % NaCl) and two PBZ concentrations (0 and 2.0 μmol L–1). Application of PBZ increased a relative water content, proline content, chlorophyll (a+b) content, and antioxidant enzyme activities in both cultivars, resulting in a better acclimation to salt stress and an increase in dry matter production. We concluded that PBZ ameliorated the negative effects of salt stress in Chinese bayberry seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

Chl:

chlorophyll

DM:

dry mass

FM:

fresh mass

MDA:

malondialdehyde

PBZ:

paclobutrazol

REC:

relative electrolyte conductivity

ROS:

reactive oxygen species

RWC:

relative water content

SOD:

superoxide dismutase

References

  • Al-Karaki G.N.: Growth, water use efficiency, and sodium and potassium acquisition by tomato cultivars grown under salt stress.–J. Plant Nutr. 23: 1–8, 2000.

    Article  CAS  Google Scholar 

  • Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction.–Annu. Rev. Plant Biol. 55: 373–399, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M., Foolad M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance.–Environ. Exp. Bot. 59: 206–216, 2007.

    Article  CAS  Google Scholar 

  • Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies.–Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Ben Ahmed C., Ben Rouina B., Sensoy S. et al.: Changes in gas exchange, proline accumulation and antioxidative enzymes activities in three olive cultivars under contrasting water vailability regimes.–Environ. Exp. Bot. 67: 345–352, 2009.

    Article  CAS  Google Scholar 

  • Bohnert H.J., Jensen R.G.: Strategies for engineering water stress tolerance in plants.–Trends Biotechnol. 14: 89–97, 1996.

    Article  CAS  Google Scholar 

  • Bor M., Özdemir F., Türkan I.: The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L.–Plant Sci. 164: 77–84, 2003.

    Article  CAS  Google Scholar 

  • Burden R.S., James C.S., Cooke D.T., Anderson NH.: C-14 demethylation in phytosterol biosynthesis-a new target site for herbicidal activity.–In: Proceedings of the Brazilian Crop Protection Conference for Weeds. 3B-4: 171–178, 1987.

    Google Scholar 

  • Cha-um S., Kirdmanee C.: Effects of water stress induced by sodium chloride and mannitol on proline accumulation, photosynthetic abilities and growth characters of eucalyptus (Eucalyptus camaldulensis Dehnh.).–New Forest. 40: 349–360, 2010.

    Article  Google Scholar 

  • Chartzoulakis K., Loupassaki M., Bertaki M., Androulakis I.: Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive genotypes.–Sci. Hortic.-Amsterdam 96: 235–247, 2002.

    Article  CAS  Google Scholar 

  • Chen K.S., Xu C.J., Zhang B., Ferguson I.B.: Chinese bayberry: botany and horticulture.–In: Janick J. (ed.): Horticultural Reviews, Vol. 10. Pp. 83–114. John Wiley & Sons, New York 2004.

    Google Scholar 

  • Dat J., Vandenabeele S., Vranová E. et al.: Dual action of active oxygen species during plant stress responses.–Cell Mol. Life Sci. 57: 779–795, 2000.

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo Neto A.D., Prisco J.T., Enéas-Filho J. et al.: Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes.–Environ. Exp. Bot. 56: 87–94, 2006.

    Article  Google Scholar 

  • Dudal R., Purnell M.F.: Land resources: salt affected soils.–Reclam. Reveg. Res. 5: 1–10, 1986.

    Google Scholar 

  • EI-Khashab A.A.M., El-Sammak A.F., Elaidy A.A. et al.: Paclobutrazol reduces some negative effects of salt stress in peach.–J. Am. Soc. Hortic. Sci. 122: 43–46, 1997.

    Google Scholar 

  • Elsheery N.I., Cao K.F.: Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango genotypes under drought stress.–Acta Physiol. Plant. 30: 769–777, 2008.

    Article  CAS  Google Scholar 

  • Feng Z., Guo A., Feng Z.: Amelioration of chilling stress by triadimefon in cucumber seedlings.–Plant Growth Regul. 39: 277–283, 2003.

    Article  CAS  Google Scholar 

  • Fletcher R.A., Gilley A., Sankhla N., Davis T.D.: Triazoles as plant growth regulators and stress protectants.–In: Janick J. (ed.): Horticultural Reviews, Vol. 24. Pp. 55–138, John Wiley & Sons, New York 2000.

    Google Scholar 

  • Fletcher R.A., Nath V.: Triadimefon reduces transpiration and increases yield in water stressed plants.–Physiol. Plantarum 62: 422–426, 1984.

    Article  CAS  Google Scholar 

  • Fu J., Huang B.: Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress.–Environ. Exp. Bot. 45: 105–114, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa P.M., Bressan R.A., Zhu J.K. et al.: Plant cellular and molecular responses to high salinity.–Ann Rev Plant Phys. 51: 463–499, 2000.

    Article  CAS  Google Scholar 

  • He Y., Chen Y., Yu C.L. et al.: Photosynthesis and yield traits in different soybean lines in response to salt stress.–Photosynthetica, doi: 10.1007/s11099-016-0217-7.

  • Hessini K., Martínez J.P., Gandour M. et al.: Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora.–Environ. Exp. Bot. 67: 312–319, 2009.

    Article  Google Scholar 

  • Hoque M.A., Okuma E., Banu M.N.A. et al.: Exogenous proline mitigate the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities.–J. Plant Physiol. 164: 553–561, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jaleel C.A., Gopi R., Manivannan P. et al.: Response of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity.–Acta Physiol. Plant. 29: 205–209, 2007.

    Article  Google Scholar 

  • Kishor A., Srivastav M., Dubey A.K. et al.: Paclobutrazol minimizes the effects of salt stress in mango (Mangifera indica L.).–J. Hortic. Sci. Biotech. 84: 459–465, 2009.

    Article  CAS  Google Scholar 

  • Kumar S.G., Madhusudhan K.V., Sreenivasulu N. et al.: Stress responses in two genotypes of mulberry (Morus alba L.) under NaCl salinity.–Indian J. Exp. Biol. 38: 192–195, 2000.

    CAS  PubMed  Google Scholar 

  • Kumar S.G., Reddy A.M., Sudhakar C.: NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance.–Plant Sci. 165: 1245–1251, 2003.

    Article  CAS  Google Scholar 

  • Li B., Wang Z.C., Sun Z.G. et al.: [Resources and sustainable resource exploitation of salinized land in China.]–Agri. Res. Arid Areas 23: 154–158, 2005. [In Chinese]

    Google Scholar 

  • Li T.T., Hu Y.Y., Du X.H. et al.: Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii Seedlings by activating photosynthesis and enhancing antioxidant systems.–PLoS One 9: e109492, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler H.K.: Chlorophyll and carotenoids: pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Manivannan P., Jaleel C.A., Kishorekumar A. et al.: Protection of Vigna unguiculata (L.) Walp. Plants from salt stress by paclobutrazol.–Colloid. Surface B 61: 315–318, 2008.

    Article  CAS  Google Scholar 

  • Marcar N.E., Khanna P.K.: Reforestation of salt-affected and acid soils.–In: Nambiar E.K.S., Brown A.G. (ed.): Management of Soil, Nutrients and Water in Tropical Plantation Forests. Pp. 481–524. ACIAR Monogr. No. 43. Canberra 1997.

    Google Scholar 

  • Marcar N.E., Zohar Y., Guo J. et al.: Effect of NaCl and high pH on seedling growth of 15 Eucalyptus camaldulensis Dehnh. Provenances.–New Forest. 23: 193–206, 2002.

    Article  Google Scholar 

  • Mc Kersie B.D., Leshem Y.Y.: Stress and Stress Co** in Cultivated Plants. Pp. 256. Kluwer Acad. Publ., Dordrecht 1994

    Book  Google Scholar 

  • Mekawy A.M.M., Assaha D.V.M., Yahagi H. et al.: Growth, physiological adaptation, and gene expression analysis of two Egyptian rice cultvars under salt stress.–Plant Physiol. Bioch. 87: 17–25, 2015.

    Article  CAS  Google Scholar 

  • Meloni D.A., Oliva M.A., Martinez C.A. et al.: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress.–Environ. Exp. Bot. 49: 69–76, 2003.

    Article  CAS  Google Scholar 

  • Nayyar H.: Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) andmaize (Zeamays) as affected by calcium and its antagonists.–Environ. Exp. Bot. 50: 253–264, 2003.

    Article  CAS  Google Scholar 

  • Oldeman L.R., Hakkeling R.T.A., Sombroek W.G.: World Map of the Status of Human-Induced Soil Degradation–an Explanatory Note.–Global Assessment of Soil Degradation (GLASOD). 2nd. rev. ed. ISRIC and PUNE, Wageningen 1991.

    Google Scholar 

  • Olmos E., Hernández J.A., Sevilla F. et al.: Induction of several antioxidant enzymes in the selection of a salt-tolerant cell line of Pisum sativum.–J. Plant Physiol. 144: 594–598, 1994.

    Article  CAS  Google Scholar 

  • Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: a review.–Ecotoxicol. Environ. Safe 60: 324–349, 2005.

    Article  CAS  Google Scholar 

  • Parihar P., Singh S., Singh R. et al.: Effect of salinity stress on 453 plants and its tolerance strategies: a review.–Environ. Sci. Pollut. R. 22: 4056–4075, 2015.

    Article  CAS  Google Scholar 

  • Procházková D., Sairam R.K., Srivastava G.C. et al.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves.–Plant Sci. 161: 765–771, 2001.

    Article  Google Scholar 

  • Ramanjulu S, Sudhakar C.: Alleviation of NaCl salinity stress by calcium is partly related to the increased proline accumulation in mulberry (Morus alba L.) callus.–J. Plant Biol. 28: 203–206, 2001.

    Google Scholar 

  • Serrano R., Rodriguez P.L.: Plants, genes and ions. - EMBO Rep. 3: 116–119, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahidi F., Hong C.: Evaluation of malonaldehyde as a marker of oxidative rancidity in meat products.–J Food Biochem. 15: 97–105, 1991.

    Article  CAS  Google Scholar 

  • Shalata A., Tal M.: The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii.–Physiol. Plantarum 104: 169–174, 1998.

    Article  CAS  Google Scholar 

  • Shan Y.J., Wang Y.L.: [Current utilization and countermeasures for coastal saline land resources in Zhejiang province.]–China Agri. Tech. Extension. 28: 42–43, 2012. [In Chinese]

    Google Scholar 

  • Sharma D.K., Dubey A.K., Srivastav M. et al.: Effect of putrescine and paclobutrazol on growth, physiochemical parameters, and nutrient acquisition of salt-sensitive citrus rootstock Karna khatta (Citrus karna Raf.) under NaCl stress.–J. Plant Growth Regul. 30: 301–311, 2011.

    Article  CAS  Google Scholar 

  • Sharma D.K., Dubey A.K., Srivastav M. et al.: Effect of paclobutrazol and putrescine on antioxidant enzymes activity and nutrients content in salt tolerant citrus rootstock sour orange under sodium chloride stress.–J Plant Nutr. 36: 1765–1779, 2013.

    Article  CAS  Google Scholar 

  • Smirnoff N.: The role of active oxygen in the response of plants to water deficit and desiccation.–New Phytol. 125: 27–58, 1993.

    Article  CAS  Google Scholar 

  • Srivastav M., Kishor A., Dahuja A. et al. Effect of paclobutrazol and salinity on ion leakage, proline content and activities of antioxidant enzymes in mango (Mangifera indica L.).–Sci. Hortic.-Amsterdam 125: 785–788, 2010.

    Article  CAS  Google Scholar 

  • Srivastav M., Ram S., Sharma R.R. et al.: Residual effect of paclobutrazol on yield and fruit quality of mango cultivars.–Indian J. Plant Physiol. SI: 483–488, 2003

    Google Scholar 

  • Sun C.D., Huang H.Z., Xu C.J. et al.: Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. Et 2 Zucc.): a review.–Plant Food. Hum. Nutr. 68: 97–106, 2013.

    Article  CAS  Google Scholar 

  • Türkan I., Bor M., Özdemir F. et al.: Differential responses of lipid peroxidation and antioxidants in the leaves of droughttolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress.–Plant Sci. 168: 223–231, 2005.

    Article  Google Scholar 

  • Wang B.P., Zheng Y.P., Li Z.J. et al.: [Utilization of Myrica rubra resources in Zhejiang and their ecological effect.]–J. Zhejiang Forest College 18: 155–160, 2001. [In Chinese]

    Google Scholar 

  • Whitaker B.D., Wang C.Y.: Effect of paclobutrazol and chilling on leaf membrane lipids in cucumber seedlings.–Physiol. Plantarum 70: 404–411, 1987.

    Article  CAS  Google Scholar 

  • Wicke B., Smeets E., Dornburg V. et al.: The global technical and economic potential of bioenergy from salt-affected soils.–Energy Environ. Sci. 4: 2669–2681, 2011.

    Article  Google Scholar 

  • Woodward A.J., Bennett I.J.: The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis.–Plant Cell Tiss. Org. 82: 189–200, 2005.

    Article  CAS  Google Scholar 

  • Yoshiba Y., Kiyosue T., Nakashima K. et al.: Regulation of levels of proline as an osmolyte in plants under water stress.–Plant Cell Physiol. 38: 1095–1102, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Zheng B.J., ** technique of fruit tree and flower plant in mountain area of southern Zhejiang and its economic analysis.]–J. Anhui Agri. Sci. 38: 10516–10517, 2010. [In Chinese]

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Fruit Innovation Team Project of Zhejiang Province (2009R50033-7) and the Major Project of National Spark Plan of China (2012GA700001). We thank LetPub (www.letpub.com) for its linguistic assistance during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Yu, W., Liu, T. et al. Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress. Photosynthetica 55, 443–453 (2017). https://doi.org/10.1007/s11099-016-0658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0658-z

Additional key words

Navigation