Log in

The Impact of Post-Processing Temperature on PLGA Microparticle Properties

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Biodegradable poly(lactide-co-glycolide) (PLGA) microparticles loaded with either risperidone or naltrexone were prepared from an emulsification homogenization process. The objective of this study was to determine the impact the post-treatment temperature has on the properties and subsequent performance of the microparticles.

Methods

The post-treatment temperature of an ethanolic solution was characterized from 10 ~ 35ºC for the naltrexone and risperidone micropartilces.

Results

The wash temperature resulted in a typical triphasic in vitro release pattern at low wash temperatures or a biphasic pattern consisting of an elevated release rate at higher post-treatment temperatures. The post-treatment temperature largely influences the particle morphology, residual solvent levels, glass transition temperature, and drug loading and is molecule dependent, whereby these characteristics subsequently influence the drug release rate.

Conclusion

The study highlights the importance of both the post-treatment process and control during manufacturing to obtain a formulation within the desired product profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Park K, Otte A, Sharifi F, Garner J, Skidmore S, Park H, Jhon YK, Qin B, Wang Y. Potential roles of the glass transition temperature of PLGA microparticles in drug release kinetics. Mol Pharm. 2021;18:18–32.

    Article  CAS  PubMed  Google Scholar 

  2. Park K, Skidmore S, Hadar J, Garner J, Park H, Otte A, Soh BK, Yoon G, Yu D, Yun Y, Lee BK, Jiang X, Wang Y. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J Control Release. 2019;304:125–34.

    Article  CAS  PubMed  Google Scholar 

  3. Park K, Otte A, Sharifi F, Garner J, Skidmore S, Park H, Jhon YK, Qin B, Wang Y. Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles. J Control Release. 2021;329:1150–61.

    Article  CAS  PubMed  Google Scholar 

  4. Garner J, Skidmore S, Park H, Park K, Choi S, Wang Y. Beyond Q1/Q2: The impact of manufacturing conditions and test methods on drug release from PLGA-based microparticle depot formulations. J Pharm Sci. 2018;107:353–61.

    Article  CAS  PubMed  Google Scholar 

  5. Ochi M, Wan B, Bao Q, Burgess DJ. Influence of PLGA molecular weight distribution on leuprolide release from microspheres. Int J Pharm. 2021;599: 120450.

    Article  CAS  PubMed  Google Scholar 

  6. Wan B, Bao Q, Zou Y, Wang Y, Burgess DJ. Effect of polymer source variation on the properties and performance of risperidone microspheres. Int J Pharm. 2021;610: 121265.

    Article  CAS  PubMed  Google Scholar 

  7. Chen W, Palazzo A, Hennink WE, Kok RJ. Effect of particle size on drug loading and release kinetics of gefitinib-loaded plga microspheres. Mol Pharm. 2017;14:459–67.

    Article  CAS  PubMed  Google Scholar 

  8. Acharya G, Shin CS, Vedantham K, McDermott M, Rish T, Hansen K, Fu Y, Park K. A study of drug release from homogeneous PLGA microstructures. J Control Release. 2010;146:201–6.

    Article  CAS  PubMed  Google Scholar 

  9. Bodmeier R, McGinity JW. The preparation and evaluation of drug-containing poly(dl-lactide) microspheres formed by the solvent evaporation method. Pharm Res. 1987;4:465–71.

    Article  CAS  PubMed  Google Scholar 

  10. Vay K, Frieß W, Scheler S. A detailed view of microparticle formation by in-process monitoring of the glass transition temperature. Eur J Pharm Biopharm. 2012;81:399–408.

    Article  CAS  PubMed  Google Scholar 

  11. Andhariya JV, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J Control Release. 2017;255:27–35.

    Article  CAS  PubMed  Google Scholar 

  12. Shen J, Choi S, Qu W, Wang Y, Burgess DJ. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J Control Release. 2015;218:2–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Otte A, Turasan H, Park K. Implications of particle size on the respective solid-state properties of naltrexone in PLGA microparticles. Int J Pharm. 2022;626:122170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharifi F, Otte A, Yoon G, Park K. Continuous in-line homogenization process for scale-up production of naltrexone-loaded PLGA microparticles. J Control Release. 2020;325:347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hua Y, Wang Z, Wang D, Lin X, Liu B, Zhang H, Gao J, Zheng AA-O. Key factor study for generic long-acting PLGA microspheres based on a reverse engineering of vivitrol(®). Molecules. 2021;26:1247.

  16. Andhariya JV, Choi SH, Wang Y, Zou Y, Burgess DJ, Shen J. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. Int J Pharm. 2017;520(1–2):79–85.

    Article  CAS  PubMed  Google Scholar 

  17. D’Souza S, Faraj JA, Giovagnoli S, Deluca PP. Development of Risperidone PLGA Microspheres. J Drug Deliv. 2014;2014: 620464.

    PubMed  PubMed Central  Google Scholar 

  18. Kohno M, Andhariya JV, Wan B, Bao Q, Rothstein S, Hezel M, Wang Y, Burgess DJ. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm. 2020;582: 119339.

    Article  CAS  PubMed  Google Scholar 

  19. Shang Q, Zhang A, Wu Z, Huang S, Tian R. In vitro evaluation of sustained release of risperidone-loaded microspheres fabricated from different viscosity of PLGA polymers. Polym Adv Technol. 2018;29:384–93.

    Article  CAS  Google Scholar 

  20. Amann LC, Gandal MJ, Lin R, Liang Y, Siegel SJ. In Vitro–In Vivo correlations of scalable PLGA-risperidone implants for the treatment of schizophrenia. Pharm Res. 2010;27:1730–7.

    Article  CAS  PubMed  Google Scholar 

  21. Su Z-X, Shi Y-N, Teng L-S, Li X, Wang L-X, Meng Q-F, Teng L-R, Li Y-X. Biodegradable poly(D, L-lactide-co-glycolide) (PLGA) microspheres for sustained release of risperidone: Zero-order release formulation. Pharm Dev Technol. 2011;16:377–84.

    Article  CAS  PubMed  Google Scholar 

  22. Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater. 2020;9:153–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brittain HG, Dickason DA, Hotz J, Lyons SL, Ramstack JM, Wright SG. Polymorphic forms of naltrexone. In: Alkermes Pharma Ireland Ltd, 2007.

  24. Li W-I, Anderson KW, Mehta RC, Deluca PP. Prediction of solvent removal profile and effect on properties for peptide-loaded PLGA microspheres prepared by solvent extraction/ evaporation method. J Control Release. 1995;37:199–214.

    Article  CAS  Google Scholar 

  25. Yoshioka T, Kawazoe N, Tateishi T, Chen G. Effects of structural change induced by physical aging on the biodegradation behavior of PLGA films at physiological temperature. Macromol Mater Eng. 2011;296:1028–34.

    Article  CAS  Google Scholar 

  26. Rawat A, Burgess DJ. Effect of physical ageing on the performance of dexamethasone loaded PLGA microspheres. Int J Pharm. 2011;415:164–8.

    Article  CAS  PubMed  Google Scholar 

  27. Marquette S, Peerboom C, Yates A, Denis L, Langer I, Amighi K, Goole J. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres. Int J Pharm. 2014;470:41–50.

    Article  CAS  PubMed  Google Scholar 

  28. Blasi P, D’Souza SS, Selmin F, DeLuca PP. Plasticizing effect of water on poly(lactide-co-glycolide). J Control Release. 2005;108:1–9.

    Article  CAS  PubMed  Google Scholar 

  29. D’Souza S, Dorati R, DeLuca PP. Effect of hydration on physicochemical properties of end-capped PLGA. Adv Biomater. 2014;2014:834942.

    Google Scholar 

Download references

Acknowledgements

This study was supported by UH3 DA048774 from the National Institute on Drug Abuse (NIDA) and the Showalter Research Trust Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Otte.

Ethics declarations

Conflicts of Interests/Competing Interests

The authors declare no competing financial or conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otte, A., Soh, B.K. & Park, K. The Impact of Post-Processing Temperature on PLGA Microparticle Properties. Pharm Res 40, 2677–2685 (2023). https://doi.org/10.1007/s11095-023-03568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03568-z

Keywords

Navigation