Log in

The Development and Mechanism Studies of Cationic Chitosan-Modified Biodegradable PLGA Nanoparticles for Efficient siRNA Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

In order to improve siRNA delivery for possible clinical applications, we developed biodegradable chitosan-modified poly(D,L-lactide-co-glycolide) (CHT-PLGA) nanoparticles with positive surface charge, high siRNA loading, high transfection efficiency and low toxicity.

Methods

CHT-PLGA nanoparticles were prepared, and siRNA was loaded by emulsion evaporation method with poly(vinyl alcohol) (PVA) as emulsifier. siRNA loading efficiency, particle size, and Zeta potential of nanoparticles were measured. Gel retardation and protection assays were conducted to determine the loading and binding of siRNA in the formulation. Cell transfection was performed to study in vitro siRNA silencing efficiency. XTT assay was used to evaluate the cytotoxicity.

Results

It was found that the nanoparticle diameter and positive Zeta potential increase as the chitosan coating concentration increases. CHT-PLGA nanoparticles showed excellent siRNA binding ability and effective protection of oligos from RNase degradation. siRNA-loaded nanoparticles were successfully delivered into the HEK 293 T cell line, and the silencing of green fluorescence protein (GFP) expression was observed using fluorescent microscopy and flow cytometry. In addition, the cytotoxicity assay revealed that CHT-PLGA nanoparticles had relatively low cytotoxicity.

Conclusion

This study suggests that biodegradable cationic CHT-PLGA nanoparticles possess great potential for efficient and safer siRNA delivery in future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ et al. Chitosan-graft-polyethylenimine as a gene carrier. J Control Release. 2007;117:273–80.

    Article  CAS  PubMed  Google Scholar 

  2. Relano-Gines A, Gabelle A, Lehmann S, Milhavet O, Crozet C. Gene and cell therapy for prion diseases. Infectious disorders drug targets. 2009;9:58–68.

    CAS  PubMed  Google Scholar 

  3. Kima T-H, Jianga H-L, Jerea D, Parka I-K, Chob M-H, Nahc J-W et al. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci. 2007;32:726–53.

    Article  CAS  Google Scholar 

  4. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115:216–25.

    Article  CAS  PubMed  Google Scholar 

  5. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

    Article  CAS  PubMed  Google Scholar 

  6. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  7. Jones SW, Souza PM, Lindsay MA. siRNA for gene silencing: a route to drug target discovery. Curr Opin Pharmacol. 2004;4:522–7.

    Article  CAS  PubMed  Google Scholar 

  8. McManusand MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev. 2002;3:737–47.

    Article  CAS  Google Scholar 

  9. Lima RT, Martins LM, Guimaraes JE, Sambade C, Vasconcelos MH. Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther. 2004;11:309–16.

    Article  CAS  PubMed  Google Scholar 

  10. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000;408:325–30.

    Article  CAS  PubMed  Google Scholar 

  11. Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature. 2000;408:331–6.

    Article  CAS  PubMed  Google Scholar 

  12. Nabatiyan A, Krude T. Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol Cell Biol. 2004;24:2853–62.

    Article  CAS  PubMed  Google Scholar 

  13. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;2:16.

    Article  PubMed  CAS  Google Scholar 

  14. Quong D, Neufeld RJ. DNA protection from extracapsular nucleases, within chitosan- or poly-L-lysine-coated alginate beads. Biotechnol Bioeng. 1998;60:124–34.

    Article  CAS  PubMed  Google Scholar 

  15. Smith AE. Viral vectors in gene therapy. Annu Rev Microbiol. 1995;49:807–38.

    Article  CAS  PubMed  Google Scholar 

  16. Pinnaduwage P, Schmitt L, Huang L. Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells. Biochim Biophys Acta. 1989;985:33–7.

    Article  CAS  PubMed  Google Scholar 

  17. Legendre JY, Szoka Jr FC. Cyclic amphipathic peptide-DNA complexes mediate high-efficiency transfection of adherent mammalian cells. Proc Natl Acad Sci USA. 1993;90:893–7.

    Article  CAS  PubMed  Google Scholar 

  18. Gao X, Huang L. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry. 1996;35:1027–36.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan X, Li L, Rathinavelu A, Hao J, Narasimhan M, He M et al. SiRNA drug delivery by biodegradable polymeric nanoparticles. Journal of Nanoscience and Nanotechnology. 2006;6:2821–8.

    Article  CAS  PubMed  Google Scholar 

  20. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    Article  CAS  PubMed  Google Scholar 

  21. Haensler J, Szoka Jr FC. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem. 1993;4:372–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ihm JE, Han KO, Han IK, Ahn KD, Han DK, Cho CS. High transfection efficiency of poly(4-vinylimidazole) as a new gene carrier. Bioconjug Chem. 2003;14:707–8.

    Article  CAS  PubMed  Google Scholar 

  23. Rolland AP. From genes to gene medicines: recent advances in nonviral gene delivery. Crit Rev Ther Drug Carrier Syst. 1998;15:143–98.

    CAS  PubMed  Google Scholar 

  24. Montag ME, Morales Jr L, Daane S. Bioabsorbables: their use in pediatric craniofacial surgery. J Craniofac Surg. 1997;8:100–2.

    Article  CAS  PubMed  Google Scholar 

  25. Eppley BL, Reilly M. Degradation characteristics of PLLA-PGA bone fixation devices. J Craniofac Surg. 1997;8:116–20.

    Article  CAS  PubMed  Google Scholar 

  26. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–47.

    Article  CAS  PubMed  Google Scholar 

  27. Miyamoto S, Takaoka K. Bone induction and bone repair by composites of bone morphogenetic protein and biodegradable synthetic polymers. Ann Chir Gynaecol. 1993;207:69–75.

    CAS  Google Scholar 

  28. Aiba S. Studies on chitosan: 2. Solution stability and reactivity of partially N-acetylated chitosan derivatives in aqueous media. Int J Biol Macromol. 1989;11:249–52.

    Article  CAS  PubMed  Google Scholar 

  29. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18:567–75.

    Article  CAS  PubMed  Google Scholar 

  30. Chandy T, Sharma CP. Chitosan-as a biomaterial. Biomater Artif Cells Artif Organs. 1990;18:1–24.

    CAS  PubMed  Google Scholar 

  31. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release. 2001;70:399–421.

    Article  CAS  PubMed  Google Scholar 

  32. Erbacher P, Zou S, Bettinger T, Steffan AM, Remy JS. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res. 1998;15:1332–9.

    Article  CAS  PubMed  Google Scholar 

  33. Yang R, Yang SG, Shim WS, Cui F, Cheng G, Kim IW et al. Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci. 2009;98:970–84.

    Article  CAS  PubMed  Google Scholar 

  34. Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine. 2007;3:173–83.

    CAS  PubMed  Google Scholar 

  35. Beisner J, Dong M, Taetz S, Nafee N, Griese EU, Schaefer U, et al. Nanoparticle mediated delivery of 2′-O-methyl-RNA leads to efficient telomerase inhibition and telomere shortening in human lung cancer cells. Lung Cancer. 2009.

  36. Taetz S, Nafee N, Beisner J, Piotrowska K, Baldes C, Murdter TE et al. The influence of chitosan content in cationic chitosan/PLGA nanoparticles on the delivery efficiency of antisense 2′-O-methyl-RNA directed against telomerase in lung cancer cells. Eur J Pharm Biopharm. 2009;72:358–69.

    Article  CAS  PubMed  Google Scholar 

  37. Kim WJ, Kim SW. Efficient siRNA delivery with non-viral polymeric vehicles. Pharm Res. 2009;26:657–66.

    Article  CAS  PubMed  Google Scholar 

  38. Park MR, Han KO, Han IK, Cho MH, Nah JW, Choi YJ et al. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Release. 2005;105:367–80.

    Article  CAS  PubMed  Google Scholar 

  39. Huang M, Fong CW, Khor E, Lim LY. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release. 2005;106:391–406.

    Article  CAS  PubMed  Google Scholar 

  40. Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release. 2001;71:39–51.

    Article  CAS  PubMed  Google Scholar 

  41. Bivas-Benita M, Romeijn S, Junginger HE, Borchard G. PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium. Eur J Pharm Biopharm. 2004;58:1–6.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank Ms. Myongcha Shin for her technical assistance in conducting FACS study at Columbia University. We would also like to thank Dr. Robert Chapman in the College of Pharmacy at Midwestern University for taking time to review the manuscript and giving us invaluable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X., Shah, B.A., Kotadia, N.K. et al. The Development and Mechanism Studies of Cationic Chitosan-Modified Biodegradable PLGA Nanoparticles for Efficient siRNA Drug Delivery. Pharm Res 27, 1285–1295 (2010). https://doi.org/10.1007/s11095-010-0103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0103-0

KEY WORDS

Navigation