Log in

Metabolic and Efflux Properties of Caco-2 Cells Stably Transfected with Nuclear Receptors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To characterise in detail the patterns of expression and functional activities of CYP and efflux pump genes in Caco-2 cells stably transfected with human Pregnane X Receptor or murine Constitutive Androstane Receptor.

Materials and Methods

Cell lines transfected with nuclear receptors were treated with established ligands, and gene expression of CYP and efflux pump genes were quantified by qRT-PCR and Western blot. P-glycoprotein activity was assessed by measuring calcein-AM accumulation and bidirectional permeability coefficients of digoxin and quinidine. CYP activities were measured with both fluorescent and non-fluorescent substrates.

Results

hPXR and mCAR upregulated some CYP and efflux pump genes ligand dependently. P-glycoprotein level was increased, but CYP3A4 protein remained below the limit of detection. P-glycoprotein activity was markedly elevated in Caco/mCAR cells and more modestly in Caco/hPXR cells. CYP3A4 activity remained lower than that in vitamin D-treated Caco-2 cells.

Conclusions

Nuclear receptors can modulate the expression of metabolic genes in Caco-2 cells, but the overall level of metabolism could not be efficiently controlled. P-glycoprotein activity increased, but CYP activities remained very low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A-B:

apical-to-basolateral

AQ:

absorptive quotient

B-A:

basolateral-to-apical

BCRP:

breast cancer resistance protein

BFC:

7-benzyloxy-4-(trifluoromethyl)-coumarin

CYP:

cytochrome P450

HFC:

4-(trifluoromethyl)-coumarin

HNF4:

hepatic nuclear factor 4

hPXR:

human pregnane X receptor

mCAR:

murine constitutive androstane receptor

MDR1:

multidrug resistance 1 gene (P-glycoprotein)

MRP2:

multidrug reistance associated Protein 2

SQ:

secretory quotient

VD3:

1a,25-dihydroxyvitamin D3

References

  1. J. Taipalensuu, H. Tornblom, G. Lindberg, C. Einarsson, F. Sjoqvist, H. Melhus, P. Garberg, B. Sjostrom, B. Lundgren, and P. Artursson. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 299:164–170 (2001).

    PubMed  CAS  Google Scholar 

  2. N. Albermann, F. H. Schmitz-Winnenthal, K. Z'graggen, C. Volk, M. M. Hoffmann, W. E. Haefeli, and J. Weiss. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem. Pharmacol. 70:949–958 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. R. S. Obach, Q. Y. Zhang, D. Dunbar, and L. S. Kaminsky. Metabolic characterization of the major human small intestinal cytochrome p450s. Drug Metab. Dispos. 29:347–352 (2001).

    PubMed  CAS  Google Scholar 

  4. Qing-Yu Zhang, Deborah Dunbar, Alina Ostrowska, Stephen Zeisloft, Jiang Yang, and S. Laurence Kaminsky. Characterization of human small intestinal cytochromes P-450. Drug Metab. Dispos. 27(7):804–809 (1999).

    PubMed  CAS  Google Scholar 

  5. L. Gervot, B. Rochat, J. C. Gautier, F. Bohnenstengel, H. Kroemer, V. de Berardinis, H. Martin, P. Beaune, and I. de Waziers. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics. 9:295–306 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. S. Drescher, H. Glaeser, T. Murdter, M. Hitzl, M. Eichelbaum, and M. F. Fromm. P-glycoprotein-mediated intestinal and biliary digoxin transport in humans. Clin. Pharmacol. Ther. 73:223–231 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. K. E. Thummel, D. O'Shea, M. F. Paine, D. D. Shen, K. L. Kunze, J. D. Perkins, and G. R. Wilkinson. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin. Pharmacol. Ther. 59:491–502 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. B. Greiner, M. Eichelbaum, P. Fritz, H. P. Kreichgauer, O. von Richter, J. Zundler, and H. K. Kroemer. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest. 104:147–153 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. M. Verschraagen, C. H. Koks, J. H. Schellens, and J. H. Beijnen. P-glycoprotein system as a determinant of drug interactions: the case of digoxin-verapamil. Pharmacol. Res. 40:301–306 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. C. L. Cummins, W. Jacobsen, and L. Z. Benet. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 300:1036–1045 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. Y. Y. Lau, C. Y. Wu, H. Okochi, and L. Z. Benet. Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J. Pharmacol. Exp. Ther. 308:1040–1045 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. K. Ito, H. Kusuhara, and Y. Sugiyama. Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption—theoretical approach. Pharm. Res. 16:225–231 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. D. Tam, H. Sun, and K. S. Pang. Influence of P-glycoprotein, transfer clearances, and drug binding on intestinal metabolism in Caco-2 cell monolayers or membrane preparations: a theoretical analysis. Drug Metab. Dispos. 31:1214–1226 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27–43 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. A.-L. B. Ungell. Caco-2 replace or refine? Drug Discovery Today: Technologies. 1:423–430 (2004).

    Article  CAS  Google Scholar 

  16. S. Döppenschmitt, P. Langguth, C. G. Regardh, T. B. Andersson, C. Hilgendorf, and H. Spahn-Langguth. Characterization of binding properties to human P-glycoprotein: development of a [3H]verapamil radioligand-binding assay. J. Pharmacol. Exp. Ther. 288:348–357 (1999).

    PubMed  Google Scholar 

  17. C. L. Crespi, B. W. Penman, and M. Hu. Development of Caco-2 cells expressing high levels of cDNA-derived cytochrome P4503A4. Pharm. Res. 13:1635–1641 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. M. Hu, Y. Li, C. M. Davitt, S. M. Huang, K. Thummel, B. W. Penman, and C. L. Crespi. Transport and metabolic characterization of Caco-2 cells expressing CYP3A4 and CYP3A4 plus oxidoreductase. Pharm. Res. 16:1352–1359 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. P. Schmiedlin-Ren, K. E. Thummel, J. M. Fisher, M. F. Paine, and P. B. Watkins. Induction of CYP3A4 by 1 alpha,25-dihydroxyvitamin D3 is human cell line-specific and is unlikely to involve pregnane X receptor. Drug Metab. Dispos. 29:1446–1453 (2001).

    PubMed  CAS  Google Scholar 

  20. A. Eneroth, E. Astrom, J. Hoogstraate, D. Schrenk, S. Conrad, H. M. Kauffmann, and K. Gjellan. Evaluation of a vincristine resistant Caco-2 cell line for use in a calcein AM extrusion screening assay for P-glycoprotein interaction. Eur. J. Pharm. Sci. 12:205–214 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. J. M. Fisher, S. A. Wrighton, P. B. Watkins, P. Schmiedlin-Ren, J. C. Calamia, D. D. Shen, K. L. Kunze, and K. E. Thummel. First-pass midazolam metabolism catalyzed by 1alpha,25-dihydroxy vitamin D3-modified Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 289:1134–1142 (1999).

    PubMed  CAS  Google Scholar 

  22. T. Korjamo, P. Honkakoski, M. R. Toppinen, S. Niva, M. Reinisalo, J. J. Palmgren, and J. Monkkonen. Absorption properties and P-glycoprotein activity of modified Caco-2 cell lines. Eur. J. Pharm. Sci. 26:266–279 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. P. Honkakoski. Nuclear receptors CAR and PXR in metabolism and elimination of drugs. Current Pharmacogenomics. 75–85 (2003).

  24. P. Honkakoski, R. Moore, J. Gynther, and M. Negishi. Characterization of phenobarbital-inducible mouse Cyp2b10 gene transcription in primary hepatocytes. J. Biol. Chem. 271:9746–9753 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. G. Bertilsson, J. Heidrich, K. Svensson, M. Asman, L. Jendeberg, M. Sydow-Backman, R. Ohlsson, H. Postlind, P. Blomquist, and A. Berkenstam. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl. Acad. Sci. USA 95:12208–12213 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. I. Tzameli, P. Pissios, E. G. Schuetz, and D. D. Moore. The xenobiotic compound 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene is an agonist ligand for the nuclear receptor CAR. Mol. Cell. Biol. 20:2951–2958 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. B. M. Forman, I. Tzameli, H. S. Choi, J. Chen, D. Simha, W. Seol, R. M. Evans, and D. D. Moore. Androstane metabolites bind to and deactivate the nuclear receptor CAR-beta. Nature. 395:612–615 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. P. Schmiedlin-Ren, K. E. Thummel, J. M. Fisher, M. F. Paine, K. S. Lown, and P. B. Watkins. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1alpha,25-dihydroxyvitamin D3. Mol. Pharmacol. 51:741–754 (1997).

    PubMed  CAS  Google Scholar 

  29. K. O. Hamilton, G. Backstrom, M. A. Yazdanian, and K. L. Audus. P-glycoprotein efflux pump expression and activity in Calu-3 cells. J. Pharm. Sci. 90:647–658 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. R. J. Edwards, D. A. Adams, P. S. Watts, D. S. Davies, and A. R. Boobis. Development of a comprehensive panel of antibodies against the major xenobiotic metabolising forms of cytochrome P450 in humans. Biochem. Pharmacol. 56:377–387 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. F. Hyafil, C. Vergely, P. Du Vignaud, and T. Grand-Perret. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53:4595–4602 (1993).

    PubMed  CAS  Google Scholar 

  32. M. D. Troutman and D. R. Thakker. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm. Res. 20:1210–1224 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. A. Collett, J. Tanianis-Hughes, D. Hallifax, and G. Warhurst. Predicting P-glycoprotein effects on oral absorption: correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a(−/−) mice in vivo. Pharm. Res. 21:819–826 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. M. Turpeinen, J. Uusitalo, J. Jalonen, and O. Pelkonen. Multiple P450 substrates in a single run: rapid and comprehensive in vitro interaction assay. Eur. J. Pharm. Sci. 24:123–132 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. M. T. Donato, N. Jimenez, J. V. Castell, and M. J. Gomez-Lechon. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 32:699–706 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. J. H. Lin, M. Chiba, and T. A. Baillie. Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol. Rev. 51:135–158 (1999).

    PubMed  CAS  Google Scholar 

  37. M. M. Doherty and W. N. Charman. The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism? Clin. Pharmacokinet. 41:235–253 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. J. M. Maglich, C. M. Stoltz, B. Goodwin, D. Hawkins-Brown, J. T. Moore, and S. A. Kliewer. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlap** but distinct sets of genes involved in xenobiotic detoxification. Mol. Pharmacol. 62:638–646 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. J. M. Rosenfeld, R. Vargas Jr, W. **e, and R. M. Evans. Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol. Endocrinol. 17:1268–1282 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. K. A. Arnold, M. Eichelbaum, and O. Burk. Alternative splicing affects the function and tissue-specific expression of the human constitutive androstane receptor. Nucl. Recept. 2:1 (2004).

    Article  PubMed  Google Scholar 

  41. A. Pfrunder, H. Gutmann, C. Beglinger, and J. Drewe. Gene expression of CYP3A4, ABC-transporters (MDR1 and MRP1-MRP5) and hPXR in three different human colon carcinoma cell lines. J. Pharm. Pharmacol. 55:59–66 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. L. B. Moore, J. M. Maglich, D. D. McKee, B. Wisely, T. M. Willson, S. A. Kliewer, M. H. Lambert, and J. T. Moore. Pregnane X Receptor (PXR), Constitutive Androstane Receptor (CAR), and Benzoate X Receptor (BXR) Define Three Pharmacologically Distinct Classes of Nuclear Receptors. Mol. Endocrinol. 16:977–986 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. H. Masuyama, N. Suwaki, Y. Tateishi, H. Nakatsukasa, T. Segawa, and Y. Hiramatsu. The pregnane X receptor regulates gene expression in a ligand- and promoter-selective fashion. Mol. Endocrinol. 19:1170–1180 (2005).

    Article  PubMed  CAS  Google Scholar 

  44. P. Honkakoski, I. Zelko, T. Sueyoshi, and M. Negishi. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol. Cell. Biol. 18:5652–5658 (1998).

    PubMed  CAS  Google Scholar 

  45. T. Sueyoshi, T. Kawamoto, I. Zelko, P. Honkakoski, and M. Negishi. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J. Biol. Chem. 274:6043–6046 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. J. Makinen, M. Reinisalo, K. Niemi, P. Viitala, J. Jyrkkarinne, H. Chung, O. Pelkonen, and P. Honkakoski. Dual action of oestrogens on the mouse constitutive androstane receptor. Biochem. J. 376:465–472 (2003).

    Article  PubMed  Google Scholar 

  47. R. G. Tirona, W. Lee, B. F. Leake, L. B. Lan, C. B. Cline, V. Lamba, F. Parviz, S. A. Duncan, Y. Inoue, F. J. Gonzalez, E. G. Schuetz, and R. B. Kim. The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat. Med. 9:220–224 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. O. Burk, K. A. Arnold, A. Geick, H. Tegude, and M. Eichelbaum. A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol. Chem. 386:503–513 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. J. Borlak and C. Zwadlo. Expression of drug-metabolizing enzymes, nuclear transcription factors and ABC transporters in Caco-2 cells. Xenobiotica. 33:927–943 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. D. Sun, H. Lennernas, L. S. Welage, J. L. Barnett, C. P. Landowski, D. Foster, D. Fleisher, K. D. Lee, and G. L. Amidon. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm. Res. 19:1400–1416 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. J. Taipalensuu, S. Tavelin, L. Lazorova, A.-C. Svensson, and P. Artursson. Exploring the quantitative relationship between the level of MDR1 transcript, protein and function using digoxin as a marker of MDR1-dependent drug efflux activity. Eur. J. Pharm. Sci. 21:77–86 (2004).

    Article  CAS  Google Scholar 

  52. A. Lampen, A. Bader, T. Bestmann, M. Winkler, L. Witte, and J. T. Borlak. Catalytic activities, protein- and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines. Xenobiotica. 28:429–441 (1998).

    Article  PubMed  CAS  Google Scholar 

  53. T. Prueksaritanont, L. M. Gorham, J. H. Hochman, L. O. Tran, and K. P. Vyas. Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab. Dispos. 24:634–642 (1996).

    PubMed  CAS  Google Scholar 

  54. H. M. Prime-Chapman, R. A. Fearn, A. E. Cooper, V. Moore, and B. H. Hirst. Differential MRP1-6 isoform expression and function in human intestinal epithelial Caco-2 cells. J. Pharmacol. Exp. Ther. (2004).

  55. J. W. Polli, S. A. Wring, J. E. Humphreys, L. Huang, J. B. Morgan, L. O. Webster, and C. S. Serabjit-Singh. Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 299:620–628 (2001).

    PubMed  CAS  Google Scholar 

  56. T. Mikkaichi, T. Suzuki, T. Onogawa, M. Tanemoto, H. Mizutamari, M. Okada, T. Chaki, S. Masuda, T. Tokui, N. Eto, M. Abe, F. Satoh, M. Unno, T. Hishinuma, K. Inui, S. Ito, J. Goto, and T. Abe. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc. Natl. Acad. Sci. USA 101:3569–3574 (2004).

    Article  PubMed  CAS  Google Scholar 

  57. M. D. Troutman and D. R. Thakker. Efflux ratio cannot assess P-glycoprotein-mediated attenuation of absorptive transport: asymmetric effect of P-glycoprotein on absorptive and secretory transport across Caco-2 cell monolayers. Pharm. Res. 20:1200–1209 (2003).

    Article  PubMed  CAS  Google Scholar 

  58. H. A. Engman, H. Lennernas, J. Taipalensuu, C. Otter, B. Leidvikz, and P. Artursson. CYP3A4, CYP3A5, and MDR1 in human small and large intestinal cell lines suitable for drug transport studies. J. Pharm. Sci. 90:1736–1751 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Technology Agency of Finland (TEKES) and the Academy of Finland. We thank Dr. Kai Kaarniranta for the help with MDR1 Western blot, Ms. Paula Nyyssönen and Mr. Markku Taskinen for skilful technical assistance and Dr. Joann von Weissenberg for hel** to revise the language of the early drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Korjamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korjamo, T., Mönkkönen, J., Uusitalo, J. et al. Metabolic and Efflux Properties of Caco-2 Cells Stably Transfected with Nuclear Receptors. Pharm Res 23, 1991–2001 (2006). https://doi.org/10.1007/s11095-006-9068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9068-4

Key words

Navigation