Log in

Design, Characterization and Optimization of Solid Lipid Nanoparticles of Bupropion by Using 23 Factorial Design

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Nanotechnology is emerging as a field in medicine that is expected to elicit significant therapeutic benefits. The main objective of the present study was to formulate and optimize bupropion loaded solid lipid nanoparticles (SLNs) by 23 factorial design so as to improve its bioavailability. The SLNs were prepared by solvent injection method. Eight SLN formulations were obtained by varying the tristearin:soya lecithin (TST:SYL) ratio, amount of drug, and volume of surfactant. Athree-factor, two-level full factorial (23) design was selected to study the interactions of three factors as influencing the drug entrapment efficiency, particle size, and % drug release. The corresponding response surface plots were generated by the Design of Experiment software Version 7.0.0 to visualize simultaneous effects of each variable on the response parameters. The lowest particle size, maximum entrapment efficiency and % drug release from the formulation loaded SLNs at TST:SYL = 1:1 ratio, 75 mg drug content, and 0.1 mL volume of surfactant could be visualized from the response plots and the overall desirability was 0.849. Therefore, SLN2 formulation was considered the best one and the values of independent variables for this formulation were assumed to be optimum for obtaining bupropion loaded SLNs. This lipid exhibited good compatibility with bupropion, without undesired mutual interaction as per differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy data. Relative reduction in diffraction intensities in the x-ray powder diffraction (XRD) studies for the SLNs indicated drug conversion from the crystalline to amorphous form. The in vivo test results showed that the best SLN formulation was significantly different in immobility period, increased percentage of open arm entries and significant increase in number of lines crossed compared to the marketed formulation. Thus, from all the above observations, it was concluded that SLN2 formulation showed improved bioavailability and sustained drug release compared to other formulations, which might be related to increased drug entrapment and surface area and decreased particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. D. Zhang, B. Yuan, M. Qiao, and F. Li, J. Pharm. Biomed. Anal., 33(2), 287–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. P. H. Silverstone, R. Williams, L. McMahon, et al., Ann. Gen. Psych., 7(19), 352 – 374 (2008).

    Google Scholar 

  3. R. HMüller, K.Mäder, and S. Gohla, Eur. J. Pharm. Biopharm., 50(1), 161 – 177 (2000).

  4. M. Manchester and P. Singh, Adv. Drug Deliv. Rev., 58(14), 1505 – 1522 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. S. Mukherjee, S. Ray, and R. S. Thakur, Ind. J. Pharm. Sci., 71(4), 349 – 358 (2008).

    Article  Google Scholar 

  6. Houli Li, **aobin Zhao, Yukun Ma, et al., J. Control. Release, 133(3), 238 – 244 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. K. S. Rahul Nair, K. Arun Kumar, T. Vishnu Priya, et al., J. Pharm. Sci. Res., 3(5), 1256 – 1264 (2011).

  8. R. Kumar,M. Yasir, S. A. Saraf, et al., Drug Discov. Today, 5(3), 246–250 (2013).

    CAS  Google Scholar 

  9. D. Suvakanta, Murthy P. Narasimha, N. Lilakanta, and Ch. Prasanta, Acta Pol. Pharm., 67(3), 217 – 223 (2003).

  10. P. G. Paterakis, E. S. Korakianiti, P. P. Dallas, and D. M. Rekkas, Int. J. Pharm., 248(1 – 2), 51 – 60 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. R. C. Mashru, V. B. Sutariya, M. G. Sankalia, and P. P. Parikh, Drug. Dev. Ind. Pharm, 31(3), 25–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bhavin K. Patel, Rajesh H. Parikh, and S. Pooja, J. Drug Deliv., 2013, 1 – 10 (2013).

  13. R. D. Porsolt and A. Bertin, Arch. Int. Pharmacodyn. Ther., 229(2), 327 – 336 (1977).

    CAS  PubMed  Google Scholar 

  14. L. J. Bertoglio, S. R. L. Joca, and F. S. Guimarães, Behav. Brain. Res., 175(1), 183 – 188 (2006).

    Article  PubMed  Google Scholar 

  15. T. Yamaguchi, A. Tsujimatsu, H. Kumamoto, et al., J. Ethnopharmacol., 143(2), 533 – 539 (2012).

    Article  PubMed  Google Scholar 

  16. J. W. Moore and H. H. Flanner, Pharm. Tech., 2(5), 64 – 74 (1996).

    Google Scholar 

  17. V. P. Shah, Y. Tsong, and P. Sathe, Pharm. Res, 18(1), 889 – 896 (1998).

    Article  Google Scholar 

  18. K.Westesen, H. Bunjes, and M. H. J. Koch, J. Control. Release, 6(2), 223 – 236 (2005).

    Google Scholar 

  19. G. Abdelbary and R. H. Fahmy, AAPS Pharm. Sci. Tech., 10(1), 211 – 219 (2009).

    CAS  Google Scholar 

  20. Z. Rahman, A. S. Zidan, and M. A. Khan, Eur. J. Pharm. Biopharm., 76(1), 127 – 137 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. C. Freitas and R. H. Muller, Eur. J. Pharm. Biopharm, 46(2), 145–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. J. Liu, T. Gong, C. Wang, et. al., Int. J. Pharm., 340(1 – 2), 153 – 162 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. K. Manjunath, J. S. Reddy, and V. Venkateswarlu, Meth. Find. Exp. Clin. Pharmacol., 95(3), 127 – 144 (2005).

    Article  Google Scholar 

  24. S. A. Wissing, R. H. Muller, and O. Kayser, Adv Drug Deliv Rev, 56(9),1257–1272 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bhavin K. Patel, Rajesh H. Parikh, and S Pooja, J. Drug Deliv., 2013, 1 – 10 (2013).

  26. S. Martins, Eur. J. Pharm. Sci., 45(5), 613 – 623 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. V. Jenning, A. F. Thunemann, and S. H. Gohla, Int. J. Pharm., 199(2), 167 – 177 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. M. Liu, J. Dong, Y. Yang, et al., Eur. Polym. J., 39(7), 375 – 382 (2005).

    Article  Google Scholar 

  29. S. J. Kshirsagar, J. Pharm. Res., 2(9), 1780 – 1785 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagadani Swarnalatha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swarnalatha, N., Vidyavathi, M. & Rani, J.S. Design, Characterization and Optimization of Solid Lipid Nanoparticles of Bupropion by Using 23 Factorial Design. Pharm Chem J 57, 590–602 (2023). https://doi.org/10.1007/s11094-023-02924-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02924-y

Keywords

Navigation