Log in

A DFT Study on the Direct CF2 Fragmentation Mechanisms of 1,3-C4F6 and 1,3-C4F6+ in Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Elucidation of the CF2 generation mechanism in 1,3-C4F6 gas plasma has been one of the important issues for experimental and theoretical researchers because of the importance of the CF2 radical in plasma etching processes. To determine the direct CF2 fragmentation mechanisms of 1,3-C4F6 in the S0, T1, and cationic D0 states, the reaction geometry, electron transfer, and molecular orbital transformation were investigated by applying the DFT(ɷB97X-D/aVTZ) method. The direct CF2 (S0) formation by C–C double bond rupture of 1,3-C4F6 (S0) proceeds while maintaining the trans-bent structure by dative bonding interaction between CF2 and its counterpart. 1,3-C4F6 (T1) preferentially produces the CFCFCF2 (T1) and CF2 (S0) fragments following a linear reaction course. This process can be explained using a stepwise electron-sharing interaction model. 1,3-C4F6+ (D0) generates a CF2 (S0) radical rather than CF2 (T1) and CF2+ (D0). The CF2 fragmentation process in D0 is also described using the electron-sharing interaction model but proceeds along the trans-rocking pathway, featuring electron oscillations between the CFCFCF2 and CF2 moieties in the C–C distance range of 1.8–2.6 Å. These findings provide insight into CF2 generation of CF2-containing perfluoro-olefins as potential alternatives to c-C4F8 and valuable information to establish the high-reliable 1,3-C4F6 plasma chemistry database essential to plasma simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yoon MY, Yeom HJ, Kim JH, Chegal W, Cho YJ, Kwon DC, Jeong JR, Lee HC (2021) Discharge physics and atomic layer etching in Ar/C4F6 inductively coupled plasmas with a radio frequency bias. Phys Plasmas 28:063504

    Article  CAS  Google Scholar 

  2. Nakamura S, Itano M, Aoyama H, Shibahara K, Yodoyama S, Hirose M (2003) Comparative studies of perfluorocarbon alternative gas plasmas for contact hole etch. Jpn J Appl Phys 42:5759–5764

    Article  CAS  Google Scholar 

  3. Samukawa S, Mukai T (1999) Differences in radical generation due to chemical bonding of gas molecules in a high-density fluorocarbon plasma: Effects of the C=C bond in fluorocarbon gases. J Vac Sci Technol A 17:2463–2466

    Article  CAS  Google Scholar 

  4. Hayashi T, Ishikawa K, Sekine M, Hori M, Kono A, Suu K (2011) Dissociation channels of c-C4F8 to CF2 radical in reactive plasma. Jpn J Appl Phys 50:036203

    Article  Google Scholar 

  5. Cobos CJ, Hintzer K, Sölter L, Tellbach E, Thaler A, Troe J (2015) Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8. Phys Chem Chem Phys 17:32219–32224

    Article  CAS  Google Scholar 

  6. Suzuki C, Sasaki K, Kadota K (1997) Spatial and temporal variations of CF and radical densities in high-density plasmas studied by laser-induced fluorescence. J Appl Phys 82:5321–5326

    Article  CAS  Google Scholar 

  7. Suzuki C, Sasaki K, Kadota K (1998) Surface productions of CF and CF2 radicals in high-density fluorocarbon plasmas. J Vac Sci Technol A 16:2222–2226

    Article  CAS  Google Scholar 

  8. Zhang D, Kushner MJ (2000) Mechanisms for CF2 radical generation and loss on surfaces in fluorocarbon plasmas. J Vac Sci Technol A 18:2661–2668

    Article  CAS  Google Scholar 

  9. Nakamura M, Hori M, Goto T, Ito M, Ishii N (2001) Spatial distributions of the absolute CF and CF2 radical densities in high-density plasma employing low global warming potential fluorocarbon gases and precursors for film formation. J Vac Sci Technol 19:2134–2141

    Article  CAS  Google Scholar 

  10. Carlos JL, Karl RR, Bauer SH (1974) Gas Phase Electron Diffraction Study of Six Fluoroethyleties. J Chem Soc Faraday Trans 2(70):177–187

    Article  Google Scholar 

  11. Hudlicky M, Pavlath AE (1995) Chemistry of organic fluorine compounds II: a critical review. American Chemical Society, Washington, DC

    Google Scholar 

  12. Andrada DM, Casals-Saniz JL, Pendás ÁM, Frenking G (2018) Dative and electron-sharing bonding in C2F4. Chem Eur J 24:9083–9089

    Article  CAS  Google Scholar 

  13. Pizzochero M, Bonfanti M, Martinazzo R (2019) To bend or not to bend, the dilemma of multiple bonds. Phys Chem Chem Phys 21:26342–26350

    Article  CAS  Google Scholar 

  14. Nakamura T, Motomura H, Tachibana K (2001) Quantum chemical study on decomposition and polymer deposition in perfluorocarbon plasmas: molecular orbital calculations of excited states of perfluorocarbons. Jpn J Appl Phys 40:847–854

    Article  CAS  Google Scholar 

  15. Li W-Z, Huang M-B (2003) Equilibrium structures and hyperfine parameters of some fluorinated hydrocarbon radical cations: a DFT B3LYP and MP2 study. J Mol Struct (THEOCHEM) 636:71–79

    Article  CAS  Google Scholar 

  16. Brundle CR, Robin MB (1970) Nonplanarity in hexafluorobutadiene as revealed by photoelectron and optical spectroscopy. J Am Chem Soc 92:5550–5555

    Article  CAS  Google Scholar 

  17. Wurrey CJ, Bucy WE, Durig JR (1977) Vibrational spectra, structure, and barrier to planarity of perfluoro-1,3-butadiene. J Chem Phys 67:2765–2770

    Article  CAS  Google Scholar 

  18. **ao H-Y, Cao J, Liu Y-J, Fang W-H, Tachikawa H, Shiotani M (2007) Structures and cis-to-trans photoisomerization of hexafluoro-1,3-butadiene radical cation: electron spin resonance and computational studies. J Phys Chem A 111:5192–5200

    Article  CAS  Google Scholar 

  19. Limão-Vieira P, Anzai K, Kato H, Hoshino M, Ferreira da Silva F, Duflot D, Mogi D, Tanioka T, Tanaka H (2012) Electronic excitation to singlet states of 1,3–C4F6, c-C4F6 and 2–C4F6 by electron impact - electron energy-loss spectroscopy and ab initio calculations. J Phys Chem A 116:10529–10538

    Article  Google Scholar 

  20. Limão-Vieira P, Duflot D, Anzai K, Kato H, Hoshino M, Ferreira da Silva F, Mogi D, Tanioka T, Tanaka H (2013) Studies of low-lying triplet states in 1,3-C4F6, c-C4F6 and 2-C4F6 by electron energy-loss spectroscopy and ab initio calculations. Chem Phys Lett 574:32–36

    Article  Google Scholar 

  21. Chun I, Efremov A, Yeom GY, Kwon KH (2015) A comparative study of CF4/O2/Ar and C4F8/O2/Ar plasmas for dry etching applications. Thin Solid Films 579:136–143

    Article  CAS  Google Scholar 

  22. Oh Y, Efremov A, Lee J, Lee J, Choi Y, Kwon KH (2022) Etching kinetics and dielectric properties of SiOC films exposed to Ar and CF4 plasmas. Thin Solid Films 749:139185

    Article  CAS  Google Scholar 

  23. Zhang D, Kushner MJ (2001) Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models. J Vac Sci Technol A 19:524–538

    Article  CAS  Google Scholar 

  24. Williams KL, Martin IT, Fisher ER (2002) On the Importance of Ions and Ion-Molecule Reactions to Plasma-Surface Interface Reactions. J Am Soc Mass Spectrom 13:518–529

    Article  CAS  Google Scholar 

  25. Wang WZ, Wu Y, Rong MZ, Éhn L, Černušák I (2012) Theoretical computation of thermophysical properties of high-temperature F2, CF4, C2F2, C2F4, C2F6, C3F6 and C3F8 plasmas. J Phys D Appl Phys 45:285201

    Article  Google Scholar 

  26. Tennyson J, Rahimi S, Hill C, Tse L, Vibhakar A, Akello-Egwel D, Brown DB, Dzarasova A, Hamilton JR, Jaksch D, Mohr S, Wren-Little K, Bruckmeier J, Agarwal A, Bartschat K, Bogaerts A, Booth JP, Goeckner MJ, Hassouni K, Itikawa Y, Braams BJ, Krishnakumar E, Laricchiuta A, Mason NJ, Pandey S, Petrovic ZL, Pu YK, Ranjan A, Rauf S, Schulze J, Turner MM, Ventzek P, Whitehead JC, Yoon JS (2017) QDB: a new database of plasma chemistries and reactions. Plasma Sources Sci Technol 26:055014

    Article  Google Scholar 

  27. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  28. Karpfen A (1999) Torsional potentials of perfluoro-1,3-butadiene and perfluoro-1,3,5-hexatriene: a comparison of ab initio and density functional results. J Phys Chem A 103:2821–2827

    Article  CAS  Google Scholar 

  29. Choi H, Park YC, Lee YS, Baeck KK (2013) Density functional theory calculations for simple prototypes of perfluorocarbons: neutral and anionic c-C4F8 and 2-C4F8. J Fluor Chem 146:46–52

    Article  CAS  Google Scholar 

  30. Gupta D, Choi H, Kwon D-C, Yoon J-S, Song M-Y (2018) Electron induced ionization of plasma processing gases: C4Fx (x = 1–8) and the isomers of C4F6 and C4F8. J Phys D: Appl Phys 51:155203

    Article  Google Scholar 

  31. Yousaf KE, Peterson KA (2009) Optimized complementary auxiliary basis sets for explicitly correlated methods: aug-cc-pVnZ orbital basis sets. Chem Phys Lett 476:303–307

    Article  CAS  Google Scholar 

  32. Chang CH, Andreassen AL, Bauer SH (1971) The molecular structure of perfluorobutyne-2 and perfluorobutadiene-1,3 as studied by gas phase electron diffraction. J Org Chem 36:920–923

    Article  CAS  Google Scholar 

  33. Weinhold F, Landis CR (2001) Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract 2:91–104

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

  35. Barker JR, Nguyen TL, Stanton JF, Aieta C, Ceotto M, Gabas F, Kumar TJD, Li CGL, Lohr LL, Maranzana A, Ortiz NF, Preses JM, Simmie JM, Sonk JA, Stimac PJ (2021) MultiWell-2021 Software Suite. University of Michigan, Ann Arbor, Michigan, USA

    Google Scholar 

  36. Truhlar D (1984) Variational Transition State Theory. Annu Rev Phys Chem 35:159–189

    Article  CAS  Google Scholar 

  37. Ali MA, Barker JR (2015) Comparison of Three Isoelectronic Multiple-Well Reaction Systems: OH + CH2O, OH + CH2CH2, and OH + CH2NH. J Phys Chem A 119:7578–7592

    Article  Google Scholar 

  38. Gallaher KL, Yokozeki A, Bauer SH (1974) Reinvestigation of the structure of perfluoroethane by electron diffraction. J Phys Chem 78:2389–2395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CAP-17-02-NFRI) and was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20202010100020). H.Choi thanks Prof. K.K.Baeck (GWNU) for helpful discussions during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heechol Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Park, Y.C., Im, YH. et al. A DFT Study on the Direct CF2 Fragmentation Mechanisms of 1,3-C4F6 and 1,3-C4F6+ in Plasma. Plasma Chem Plasma Process 43, 47–66 (2023). https://doi.org/10.1007/s11090-022-10288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10288-6

Keywords

Navigation