Log in

Rapid Atmospheric Pressure Ambient Air Plasma Functionalization of Poly(styrene) and Poly(ethersulfone) Foils

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Activation of polymeric surfaces, i.e. formation and/or modification of the functional groups on the surface of a material, is essential prior to the further processing of polymers, especially in applications where wettability plays a crucial role. In this study, an atmospheric pressure ambient air plasma treatment of poly(styrene) (PS) and poly(ethersulfone) (PES) foils using diffuse coplanar surface barrier discharge is presented. The plasma treatment for 0.5 s resulted in a decrease of water contact angle from the original value of 83° to 26° for PS and from 76° to 32° for PES. No significant changes in wettability were observed for prolonged treatment times. Better wettability was correlated with decreasing carbon to oxygen ratio resulting from an incorporation of oxygen-containing functional groups C–OH, C=O and O–C=O on the surface. X-ray photoelectron spectroscopy was employed to study details in the changes of the surface chemistry following the plasma exposure. We used atomic force microscopy to study the formation of low molecular weight oxidized material (LMWOM) during the plasma treatment. After dissolving the LMWOM in water, we observed roughening of the plasma-treated surfaces at the nanometre level due to etching induced by plasma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vesel A, Mozetic M (2017) J Phys D Appl Phys 50(29):293001. https://doi.org/10.1088/1361-6463/aa748a

    Article  CAS  Google Scholar 

  2. Černák M, Černáková L, Hudec I, Kováčik D, Zahoranová A (2009) EPJ Appl Phys 47(2):22806. https://doi.org/10.1051/epjap/2009131

    Article  CAS  Google Scholar 

  3. Holländer A, Cosemans P (2020) Plasma Process Polym 17(1):1900155. https://doi.org/10.1002/ppap.201900155

    Article  CAS  Google Scholar 

  4. Kogelschatz U (2003) Plasma Chem Plasma Process 23(1):1–46. https://doi.org/10.1023/A:1022470901385

    Article  CAS  Google Scholar 

  5. Galmiz O, Pavliňák D, Zemánek M, Brablec A, Černák M (2017) Plasma Process Polym 14(9):1600220. https://doi.org/10.1002/ppap.201600220

    Article  CAS  Google Scholar 

  6. Ivanova TV, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, Cameron DC, Černák M (2017) Plasma Process Polym 14(10):1600231. https://doi.org/10.1002/ppap.201600231

    Article  CAS  Google Scholar 

  7. Alenazi NA, Hussein MA, Alamry KA, Asiri AM (2017) Des Monomers Polym 20(1):532–546. https://doi.org/10.1080/15685551.2017.1398208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao C, Xue J, Ran F, Sun S (2013) Prog Mater Sci 58(1):76–150. https://doi.org/10.1016/j.pmatsci.2012.07.002

    Article  CAS  Google Scholar 

  9. Van der Bruggen B (2009) J Appl Polym Sci 114(1):630–642. https://doi.org/10.1002/app.30578

    Article  CAS  Google Scholar 

  10. Marjani A, Nakhjiri AT, Adimi M, Jirandehi HF, Shirazian S (2020) Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-58472-y

    Article  CAS  Google Scholar 

  11. Wang H, Park M, Liang H, Wu S, Lopez IJ, Ji W, Li G, Snyder SA (2017) Water Res 125:42–51. https://doi.org/10.1016/j.watres.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  12. Tsehaye MT, Wang J, Zhu J, Velizarov S, Van der Bruggen B (2018) J Memb Sci 550(January):462–469. https://doi.org/10.1016/j.memsci.2018.01.022

    Article  CAS  Google Scholar 

  13. Ren K, Zhou J, Wu H (2013) Acc Chem Res 46(11):2396–2406. https://doi.org/10.1021/ar300314s

    Article  CAS  PubMed  Google Scholar 

  14. Pentecost AM, Martin RS (2015) Anal Methods 7(7):2968–2976. https://doi.org/10.1039/c5ay00197h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan CY, Goral VN, DeRosa ME, Huang TJ, Yuen PK (2014) Biomicrofluidics 8(4):046505. https://doi.org/10.1063/1.4894409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jullien MC, Pascual M, Kerdraon M, Rezard Q, Jullien MC, Champougny L (2019) Soft Matter 15(45):9253–9260. https://doi.org/10.1039/c9sm01792e

    Article  CAS  PubMed  Google Scholar 

  17. Sabatini V, Checchia S, Farina H, Ortenzi MA (2016) Macromol Res 24(9):800–810. https://doi.org/10.1007/s13233-016-4105-6

    Article  CAS  Google Scholar 

  18. Vrlinič T, Vesel A, Cvelbar U, Krajnc M, Mozetič M (2007) Surf Interface Anal 39(6):476–481. https://doi.org/10.1002/sia.2548

    Article  CAS  Google Scholar 

  19. Homola T, Wu LYL, Černák M (2014) J Adhes 90(4):296–309. https://doi.org/10.1080/00218464.2013.794110

    Article  CAS  Google Scholar 

  20. Feng J, Wen G, Huang W, Kang ET, Neoh KG (2006) Polym Degrad Stab 91(1):12–20. https://doi.org/10.1016/j.polymdegradstab.2005.05.001

    Article  CAS  Google Scholar 

  21. Vesel A, Zaplotnik R, Kovac J, Mozetic M (2018) Plasma Sour Sci Technol 27(9):094005. https://doi.org/10.1088/1361-6595/aad486

    Article  CAS  Google Scholar 

  22. Gonzalez E, Hicks RF (2010) Langmuir 26(5):3710–3719. https://doi.org/10.1021/la9032018

    Article  CAS  PubMed  Google Scholar 

  23. Jokinen V, Suvanto P, Franssila S (2012) Biomicrofluidics 6(1):016501. https://doi.org/10.1063/1.3673251

    Article  CAS  PubMed Central  Google Scholar 

  24. Guimond S, Wertheimer MR (2004) J Appl Polym Sci 94(3):1291–1303. https://doi.org/10.1002/app.21134

    Article  CAS  Google Scholar 

  25. Strobel M, Dunatov C, Strobel JM, Lyons CS, Perron SJ, Morgen MC (1989) J Adhes Sci Technol 3(1):321–335. https://doi.org/10.1163/156856189X00245

    Article  CAS  Google Scholar 

  26. Du K, Jiang Y, Huang PS, Ding J, Gao T, Choi CH (2018) J Micromech Microeng 28(1):14006. https://doi.org/10.1088/1361-6439/aa9d28

    Article  CAS  Google Scholar 

  27. Fernández-Blázquez JP, Del Campo A (2012) Soft Matter 8(8):2503–2508. https://doi.org/10.1039/c2sm06739k

    Article  CAS  Google Scholar 

  28. Shekargoftar M, Kelar J, Krumpolec R, Jurmanova J, Homola T (2018) IEEE Trans Plasma Sci 46(10):3653–3661. https://doi.org/10.1109/TPS.2018.2861085

    Article  CAS  Google Scholar 

  29. Šimor M, Ráhel’ J, Vojtek P, Černák M, Brablec AA (2002) Appl Phys Lett 81:2716. https://doi.org/10.1063/1.1513185

    Article  CAS  Google Scholar 

  30. Homola T, Matoušek J, Hergelová B, Kormunda M, Wu LYL, Černák M (2012) Polym Degrad Stab 97(11):2249–2254. https://doi.org/10.1016/j.polymdegradstab.2012.08.001

    Article  CAS  Google Scholar 

  31. Shekargoftar M, Krumpolec R, Homola T (2018) Mater Sci Semicond Process 75:95–102. https://doi.org/10.1016/j.mssp.2017.11.022

    Article  CAS  Google Scholar 

  32. Kelar J, Čech J, Slavíček P (2015) Acta Polytech 55(2):109–112. https://doi.org/10.14311/AP.2015.55.0109

    Article  Google Scholar 

  33. Grace JM, Gerenser LJ (2003) J Dispers Sci Technol 24(3–4):305–341. https://doi.org/10.1081/DIS-120021793

    Article  CAS  Google Scholar 

  34. Rezaei F, Dickey MD, Bourham M, Hauser PJ (2017) Surf Coat Technol 309:371–381. https://doi.org/10.1016/j.surfcoat.2016.11.072

    Article  CAS  Google Scholar 

  35. Gonzalez E, Barankin MD, Guschl PC, Hicks RF (2009) IEEE Trans Plasma Sci 37(6 PART 1):823–831. https://doi.org/10.1109/TPS.2009.2014769

    Article  CAS  Google Scholar 

  36. Afkham S, Raisi A, Aroujalian A (2016) Desalin. Water Treat 57(56):26976–26992. https://doi.org/10.1080/19443994.2016.1175384

    Article  CAS  Google Scholar 

  37. Pal S, Ghatak SK, De S, DasGupta S (2008) Appl Surf Sci 255(5 PART 1):2504–2511. https://doi.org/10.1016/j.apsusc.2008.07.184

    Article  CAS  Google Scholar 

  38. Dong LC, Kim SH, Yang IH, Kim D, Sung YC, Kim BH (2004) Macromol Res 12(6):553–558. https://doi.org/10.1007/bf03218443

    Article  Google Scholar 

  39. Vesel A (2010) Surf Coat Technol 205(2):490–497. https://doi.org/10.1016/j.surfcoat.2010.07.016

    Article  CAS  Google Scholar 

  40. Häidopoulos M, Horgnies M, Mirabella F, Pireaux JJ (2008) Plasma Process. Polym 5(1):67–75. https://doi.org/10.1002/ppap.200700067

    Article  CAS  Google Scholar 

  41. Bitar R, Asadian M, Van Vrekhem S, Cools P, Declercq H, Morent R, De Geyter N (2018) Surf Coat Technol 350:985–996. https://doi.org/10.1016/j.surfcoat.2018.03.041

    Article  CAS  Google Scholar 

  42. Olabanji OT, Bradley JW (2012) Plasma Process. Polym 9(9):929–936. https://doi.org/10.1002/ppap.201200011

    Article  CAS  Google Scholar 

  43. Lawton RA, Price CR, Runge AF, Doherty WJ, Saavedra SS (2005) Colloids Surf Physicochem. Eng Asp 253(1–3):213–215. https://doi.org/10.1016/j.colsurfa.2004.11.010

    Article  CAS  Google Scholar 

  44. Lim H, Lee Y, Han S, Cho J, Kim J (2001) J Vac Sci Technol A 19:1490. https://doi.org/10.1116/1.1382650

    Article  CAS  Google Scholar 

  45. Novák I, Florián Š (2004) J Mater Sci 39(6):2033–2036. https://doi.org/10.1023/B:JMSC.0000017765.69441.dd

    Article  Google Scholar 

  46. Beamson D, Briggs G (1992) High resolution XPS of organic polymers: the scienta ESCA300 database, 1st edn. Wiley, New York

    Google Scholar 

  47. Wohlfart E, Fern Andez-Bl Azquez JP, Knoche E, Bello A, Erez EP, Arzt E, Anzazu Del Campo A (2010) Macromolecules 43:9908–9917. https://doi.org/10.1021/ma101889s

    Article  CAS  Google Scholar 

  48. Junkar I, Cvelbar U, Vesel A, Hauptman N, Mozetič M (2009) Plasma Process. Polym 6(10):667–675. https://doi.org/10.1002/ppap.200900034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by projects LM2018097 and LM2018110 funded by Ministry of Education, Youth and Sports of Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Július Vida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vida, J., Ilčíková, M., Přibyl, R. et al. Rapid Atmospheric Pressure Ambient Air Plasma Functionalization of Poly(styrene) and Poly(ethersulfone) Foils. Plasma Chem Plasma Process 41, 841–854 (2021). https://doi.org/10.1007/s11090-021-10155-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10155-w

Keywords

Navigation