Log in

Hydrophobic–Hydrophilic Character of Hexamethyldisiloxane Films Polymerized by Atmospheric Pressure Plasma Jet

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper reports on polymerization of hexamethyldisiloxane (HMDSO) using an atmospheric pressure dielectric barrier discharge plasma jet. The aim of the study is to contribute to the knowledge of thin film deposition using a low cost technique of atmospheric pressure plasma. The monomer HMDSO was used as a precursor for polymerization. The discharge was powered using a laboratory made resonant power supply working with sinusoidal voltage signal at a frequency of 8 kHz. The coatings were characterized using Fourier transform infrared spectroscopy, atomic force microscopy, growth rates and surface free energy measurements. The hydrophobic nature of the films was found to be decreased with increasing the plasma power. Fourier transform infrared spectroscopy gave an indication of the dominated inorganic content of the surface at higher discharge. An average growth rate of 220 nm min−1 was achieved at a monomer flow rate of 5 sccm and discharge power of 12.5 W. The films obtained using plasma jet were found to be stable in aqueous media and well adhered with substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fang J, Chen H, Yu X (2001) Studies on plasma polymerization of hexamethyldisiloxane in the presence of different carrier gases. J Appl Polym Sci 80:1434–1438

    Article  CAS  Google Scholar 

  2. Asandulesa M, Topala I, Pohoata V, Dumitrascu N (2000) Influence of operational parameters on plasma polymerization process at atmospheric pressure. J Appl Phys 108:093310–093315

    Article  Google Scholar 

  3. Bashir M, Rees JM, Zimmerman WB (2013) Plasma polymerization in a microcapillary using an atmospheric pressure dielectric barrier discharge. Surf Coat Technol 234:82–91

    Article  CAS  Google Scholar 

  4. Bradley JW, Oh J-S, Olabanji OT, Hale C, Mariani R, Kontis K (2011) Schlieren photography of the outflow from a plasma jet. IEEE T Plasma Sci 39:2312–2313

    Article  CAS  Google Scholar 

  5. Goldman M, Goldman A, Sigmond RS (1985) The corona discharge, its properties and specific uses. Pure Appl Chem 57:1353–1362

    CAS  Google Scholar 

  6. Bashir M, Bashir S, Rees JM, Zimmerman WB (2014) Surface coating of bonded PDMS microchannels by atmospheric pressure microplasma. Plasma Process Polym 11:279–288

    Article  CAS  Google Scholar 

  7. Luo HL, Sheng J, Wan YZ (2007) Plasma polymerization of styrene with carbon dioxide under glow discharge conditions. Appl Surf Sci 253:5203–5207

    Article  CAS  Google Scholar 

  8. Hayakawa T, Yoshinari M, Nemoto K (2004) Characterization and protein-adsorption behavior of deposited organic thin film onto titanium by plasma polymerization with hexamethyldisiloxane. Biomaterials 25:119–127

    Article  CAS  Google Scholar 

  9. Yasuda H (1984) Plasma polymerization for protective coatings and membranes. J Membr Sci 18:273–284

    Article  CAS  Google Scholar 

  10. Muguruma H, Hiratsuka A, Karube I (2000) Thin-film glucose biosensor based on plasma-polymerized film: simple design for mass production. Anal Chem 72:2671–2675

    Article  CAS  Google Scholar 

  11. Homma T, Yamaguchi M, Kutsuzama Y, Otstuka N (1999) Electrical stability of polyimide siloxane films for interlayer dielectrics in multilevel interconnections. Thin Solid Films 340:237–241

    Article  CAS  Google Scholar 

  12. Yeo S, Kwon T, Choi C, Park H, Hyun JW, Jung D (2006) The patterned hydrophilic surfaces of glass slides to be applicable for the construction of protein chips. Curr Appl Phys 6:267–270

    Article  Google Scholar 

  13. Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M (2009) Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater 4:045002–045008

    Article  Google Scholar 

  14. Twomey B, Rahman M, Byrne G, Hynes A, OHare L-A, ONeill L, Dowling D (2008) Effect of plasma exposure on the chemistry and morphology of aerosol-assisted, plasma-deposited coatings. Plasma Process Polym 5:737–744

    Article  CAS  Google Scholar 

  15. Raballand V, Benedikt J, von Keudell A (2008) Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet. Appl Phys Lett 92:091502–091504

    Article  Google Scholar 

  16. Massines F, Gherardi N, Fornelli A, Martin S (2005) Atmospheric pressure plasma deposition of thin films by Townsend dielectric barrier discharge. Surf Coat Tech 200:1855–1861

    Article  CAS  Google Scholar 

  17. Kriegseis J, Moller B, Grundmann S, Tropea C (2011) Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J Electrostat 69:302–312

    Article  Google Scholar 

  18. Manley TC (1943) The electric characteristics of the ozonator discharge. J Electrochem Soc 84:83–96

    Article  Google Scholar 

  19. Bashir M, Rees JM, Bashir S, Zimmerman WB (2014) Characterization of atmospheric pressure microplasma produced from argon and a mixture of argon-ethylenediamine. Phys Lett A 378:2395–2405

    Article  CAS  Google Scholar 

  20. Nagao I, Nishida M, Yukimura K, Kambara S, Maruyama T (2002) NOx removal using nitrogen gas activated by dielectric barrier discharge at atmospheric pressure. Vacuum 65:481–487

    Article  CAS  Google Scholar 

  21. Gibalov VI, Pietsch GJ (2000) The development of dielectric barrier discharges in gas gaps and on surfaces. J Phys D Appl Phys 33(20):2618

    Article  CAS  Google Scholar 

  22. Reddy EL, Biju VM, Subrahmanyam Ch (2012) Production of hydrogen from hydrogen sulfide assisted by dielectric barrier discharge. Int J Hydrogen Energy 37:2204–2209

    Article  CAS  Google Scholar 

  23. Kale KH, Palaskar S (2010) Atmospheric pressure plasma polymerization of hexamethyldisiloxane for imparting water repellency to cotton fabric. Text Res J 81:608–620

    Article  Google Scholar 

  24. Lee SH, Lee DC (1998) Preparation and characterization of thin films by plasma polymerization of hexamethyldisiloxane. Thin Solid Films 325:83–86

    Article  CAS  Google Scholar 

  25. Morent R, Geyter ND, Vlierberghe SV, Dubruel P, Leys C, Schacht E (2009) Organic-inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure. Surf Coat Tech 203:1366–1372

    Article  CAS  Google Scholar 

  26. Lamendola R, d’ Agostino R, Fracassi F (1997) Thin film deposition from hexamethyldisiloxane fed glow discharges. Plasmas Polym 2:147–164

    Article  CAS  Google Scholar 

  27. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  28. Pelagade SM, Singh NL, Rane RS, Mukherjee S, Deshpande UP, Ganesan V, Shripathi T (2012) Investigation of surface free energy for PTFE polymer by bipolar argon plasma treatment. JSEMAT 2:132–136

    Article  CAS  Google Scholar 

  29. Zenkiewicz M (2001) Wettability and surface free energy of corona-treated biaxially-oriented polypropylene. J Adhes Sci Technol 15(14):1769–1785

    Article  CAS  Google Scholar 

  30. Berthier J, Silberzan P (2006) Microfluidics for biotechnology, 1st edn. Artech house, London

    Google Scholar 

  31. Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53:1466–1467

    Article  CAS  Google Scholar 

  32. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  33. Cassie DAB, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  34. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Process Polym 3:392–418

    Article  CAS  Google Scholar 

  35. Lopez-Barrea JA, Pimentel-Tinoco OG, Olayo-Valles R, Morales-Corona J, Olayo R (2014) Water permeability of quarry stone superficially modified by plasma polymerization of hexamethyldisiloxane at atmospheric pressure. J Coat Tech Res 11:661–664

    Article  CAS  Google Scholar 

  36. Levasseur O, Stafford L, Gherardi N, Naude N, Blanchard V, Blanchet P, Riedl B, Sarkissian A (2012) Deposition of hydrophobic functional groups on wood surfaces using atmospheric-pressure dielectric barrier discharge in helium-hexamethyldisiloxane gas mixtures. Plasma Process Polym 9:1168–1175

    Article  CAS  Google Scholar 

  37. Ji Y-Y, Kim S-S, Kwon O-P, Lee S-H (2009) Easy fabrication of large-size superhydrophobic surfaces by atmospheric pressure plasma polymerization with non-polar aromatic hydrocarbon in an in-line process. Appl Surf Sci 255:4575–4578

    Article  CAS  Google Scholar 

  38. Foest R, Kindel E, Lange H, Ohl A, Stieber M, Weltmann K-D (2007) RF capillary jet—a tool for localized surface treatment. Contrib Plasma Phys 47:119–128

    Article  CAS  Google Scholar 

  39. Trunec D, Navratil Z, Stahel P, Zajickova L, Bursikova V, Cech J (2004) Deposition of thin organosilicon polymer films in atmospheric pressure glow discharge. J Phys D Appl Phys 37:2112–2120

    Article  CAS  Google Scholar 

  40. Sira M, Trunec D, Stahel P, Bursikova V, Navratil Z (2008) Surface modification of polycarbonate in homogeneous atmospheric pressure discharge. J Phys D Appl Phys 41:015205–015212

    Article  Google Scholar 

  41. Han MH, Noh JH, Lee TJ, Choi JH, Park KW, Hwang HS, Song KM, Baik HK (2008) High-rate SiO2 deposition by oxygen cold arc plasma jet at atmospheric pressure. Plasma Process Polym 5:861–866

    Article  CAS  Google Scholar 

  42. Zhu X, Arefi-Khonsari F, Petit-Etienne C, Tatoulian M (2005) Open air deposition of SiO2 films by an atmospheric pressure line-shaped plasma. Plasma Process Polym 2:407–413

    Article  CAS  Google Scholar 

  43. Yasuda H (1985) Plasma polymerization. Academic Press, New York

    Google Scholar 

Download references

Acknowledgments

M.B. would like to acknowledge the Higher Education Commission of Pakistan for financial support through its IPFP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bashir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, M., Bashir, S. Hydrophobic–Hydrophilic Character of Hexamethyldisiloxane Films Polymerized by Atmospheric Pressure Plasma Jet. Plasma Chem Plasma Process 35, 739–755 (2015). https://doi.org/10.1007/s11090-015-9623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9623-z

Keywords

Navigation