Log in

Determination of the Number of OH Radicals in EB-Irradiated Humid Gases Using Oxidation of CO

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Electron beam (EB) technology has an advantage for treating dilute environmental pollutants in gases due to high-density population of active species such as radicals and atoms. In general, OH radicals play an important role of initiating the decomposition and removal of such pollutants. It is quite important to understand the behavior of OH radical production for the development of efficient decomposition/removal processes and the comparison with other purification methods. The number of OH radicals produced in humid N2 at doses of 2.0–10.0 kGy with dose rates of 0.17–2.55 kGy/s under 1-MeV EB irradiation was indirectly determined using an index of oxidation of CO to CO2, which has been used in atmospheric chemistry. An experiment under conditions where all OH radicals produced react with CO demonstrated that the concentration of CO2 increased linearly with doses of 0–10 kGy, and the G(OH) was estimated as 4.90.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chmielewski AG, Tyminski B, Dobrowolski A, Iller E, Zimek Z, Licki J (2000) Radiat Phys Chem 57:527–530

    Article  ADS  Google Scholar 

  2. Doi Y, Nakanishi I, Konno Y (2000) Radiat Phys Chem 57:495–499

    Article  ADS  Google Scholar 

  3. Hakoda T, Hashimoto S, Fujiyama Y, Mizuno A (2000) J Phys Chem A 104:59–66

    Article  Google Scholar 

  4. Sun Y, Hakoda T, Chmielewski GA, Hashimoto S, Zimek Z, Bulka S, Ostapczuk A, Nichipor H (2001) Radiat Phys Chem 62:353–360

    Article  ADS  Google Scholar 

  5. Hakoda T, Hashimoto S, Kojima T (2002) Bull Chem Soc Jpn 75:2177–2183

    Article  Google Scholar 

  6. Hirota K, Woletz K, Paur HR, Mätzing H (1995) Radiat Phys Chem 46:1093–1097

    Article  ADS  Google Scholar 

  7. Hirota K, Hakoda T, Arai H, Hashimoto S (2000) Radiat Phys Chem 57:63–73

    Article  ADS  Google Scholar 

  8. Hirota K, Sakai H, Washio M, Kojima T (2004) Ind Eng Chem Res 43:1185–1191

    Article  Google Scholar 

  9. Hirota K, Hakoda T, Taguchi M, Takigami M, Kim H, Kojima T (2003) Environ Sci Technol 37:3164–3170

    Article  Google Scholar 

  10. Willis C, Boyd AW (1976) Int J Radiat Phys Chem 8:71–111

    Article  Google Scholar 

  11. Mätzing H (1991) Adv Chem Phys 80:315–402

    Article  Google Scholar 

  12. Sander SP, Finlayson-Pitts BJ, Friedl RR, Golden DM, Huie RE, Keller-Rudek H, Kolb CE, Kurylo MJ, Molina MJ, Moortgat GK, Orkin VL, Ravishankara AR, Wine PH (2006) Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15

  13. Campbell MJ, Sheppard JC, Au BF (1979) Geophys Res Lett 6:175–178

    Article  ADS  Google Scholar 

  14. Campbell MJ, Farmer JC, Fitzner CA, Henry MN, Sheppard JC, Hardy RJ, Hopper JF, Muralidhar V (1986) J Atmos Chem 4:413–427

    Article  Google Scholar 

  15. Forster R, Frost M, Fulle D, Hamann HF, Hippler H, Schlepegrell A, Troe J (1995) J Chem Phys 103:2949–2958

    Article  ADS  Google Scholar 

  16. Sugawara K, Ishikawa Y, Sato S (1980) Bull Chem Soc Jpn 53:1344–1351

    Article  Google Scholar 

  17. Bohn B, Zetzsch C (1998) J Chem Soc Faraday Trans 94:1203–1210

    Article  Google Scholar 

  18. Stedman DH, Niki H (1973) Environ Lett 4:303–310

    Article  Google Scholar 

  19. Su Z-Z, Ito K, Takashima K, Katsura S, Onda K, Mizuno A (2002) J Phys D: Appl Phys 35:3192–3198

    Article  ADS  Google Scholar 

  20. Prasad SS, Huntress WT (1980) Astrophys J Suppl Ser 43:1–35

    Article  ADS  Google Scholar 

  21. Rowe BR, Vallee F, Queffelec JL, Gomet JC, Morlais M (1988) J Chem Phys 88:845–850

    Article  ADS  Google Scholar 

  22. Jones FT, Sworski TJ (1966) J Phys Chem 70:1546–1552

    Article  Google Scholar 

  23. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Atmos Chem Phys 4:1461–1738

    Article  Google Scholar 

  24. Howard MJ, Smith IWM (1980) Chem Phys Lett 69:40–44

    Article  ADS  Google Scholar 

  25. Barnett AJ, Marston G, Wayne RP (1987) J Chem Soc Faraday Trans 2 83:1453–1463

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hyun-Ha Kim, National Institute of Advanced Industrial Science and Technology, for useful comments on the determination of OH radical number.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruyuki Hakoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakoda, T., Shimada, A., Matsumoto, K. et al. Determination of the Number of OH Radicals in EB-Irradiated Humid Gases Using Oxidation of CO. Plasma Chem Plasma Process 29, 69–78 (2009). https://doi.org/10.1007/s11090-008-9162-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9162-y

Keywords

Navigation