Log in

A Study on Effect of Reactive and Rare Earth Element Additions on the Oxidation Behavior of Mo–Si–B System

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Mo–9Si–8B–1Ti, Mo–9Si–8B–1.8Ti, Mo–9Si–8B–0.2La and Mo–9Si–8B–0.4La2O3 (at.%) alloys were prepared using mechanical alloying followed by hot isostatic pressing and field assisted sintering. XRD, SEM and EBSD analysis confirmed the formation of Mo solid solution, A15 and T2 phases in the alloys. Isothermal oxidation behavior of the specimens was studied in the temperature range from 750 to 1,300 °C for up to 100 h. Both the Ti and La containing alloys showed superior oxidation behavior compared to unalloyed Mo–Si–B at 900 °C at the initial periods of oxidation. Ti-added alloys suffered higher rate of weight loss at higher temperatures (1,000–1,300 °C) due to the formation of non-protective low viscosity SiO2-TiO2-B2O3 scale. La-alloyed Mo–Si–B showed superior oxidation resistance at intermediate temperatures (900 °C) as well as at higher temperatures. Enrichment of La at the oxide/alloy interface was found to be the reason for improved oxidation behavior of La-alloyed Mo–Si–B. Amongst the four materials studied, the La2O3 containing alloy showed the best oxidation resistance at 900 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. John H. Perepezko, Science 20, 2009 (1068).

    Article  Google Scholar 

  2. M. Heilmaier, M. Kruger, H. Saage, J. Rosler, D. Mukherji, U. Glatzel, R. Volkl, R. Huttner, G. Eggeler, Ch Somsen, T. Depka, H.-J. Christ, B. Gorr and S. Burk, Journal of Metals 67, 2009 (61).

    Google Scholar 

  3. E. W. Lee, J. Cook, A. Khan, R. Mahapatra and J. Waldman, Journal of Metals 43, 1991 (54).

    CAS  Google Scholar 

  4. A. K. Vasudevan and J. J. Petrovic, Materials Science and Engineering A 155, 1992 (1).

    Article  Google Scholar 

  5. D. E. Alman, K. G. Shaw, N. S. Stoloff and K. Rajan, Materials Science and Engineering A 155, 1992 (85).

    Article  Google Scholar 

  6. T. C. Chou and T. G. Nieh, Scripta Metallurgical et Materialia 27, 1992 (19).

    Article  CAS  Google Scholar 

  7. D. L. Anton and M. M. Shah, “High temperature properties of refractory intermetallics”, Materials Research Society Symposium Proceedings 213, 1991, pp. 733–739.

  8. M. K. Meyer and M. Akinc, Journal of American Ceramic Society 79, 1996 (2763).

    Article  CAS  Google Scholar 

  9. V. Supatarawanich, D. R. Johnson and C. T. Liu, Materials Science and Engineering A 344, 2003 (328).

    Article  Google Scholar 

  10. T. A. Parthasarathy, M. G. Mendiratta and D. M. Dimiduk, Acta Materialia 50, 2002 (1857).

    Article  CAS  Google Scholar 

  11. S. Burk, B. Gorr, V. B. Trindade and H.-J. Christ, Oxidation of Metals 73, 2010 (163).

    Article  CAS  Google Scholar 

  12. B. A. Pint, Oxidation of Metals 49, 1998 (531).

    Article  CAS  Google Scholar 

  13. N. Hiramatsu and F. H. Stott, Oxidation of Metals 51, 1999 (479).

    Article  CAS  Google Scholar 

  14. B. A. Pint, Oxidation of Metals 45, 1996 (1).

    Article  CAS  Google Scholar 

  15. T. J. Nijdam and W. G. Sloof, Acta Materialia 55, 2007 (5980).

    Article  CAS  Google Scholar 

  16. D. Naumenko, B. Gleeson, E. Wessel, L. Singheiser and W. J. Quadakkers, Metallurgical and Materials Transactions A 38, 2007 (2974).

    Article  Google Scholar 

  17. D. P. Whittle and J. Stringer, Philosophical Transactions of Royal Society London 295, 1980 (309).

    CAS  Google Scholar 

  18. M. G. Hebsur and J. R. Stephens, U. S. Patent No. 4,983,358 (8 January 1991).

  19. A. Mueller, G. Wang, R. A. Rapp, E. L. Courtright and T. A. Kircher, Materials Science and Engineering A 155, 1992 (199).

    Article  Google Scholar 

  20. Ying Yang, H. Bei, Shuanglin Chen, E. P. George, Jaimie Tiley and Austin Chang, Acta Materialia 58, 2010 (541).

    Article  CAS  Google Scholar 

  21. H. Okamoto, Desk Handbook-Phase Diagrams for Binary Alloys, ASM International, 2000.

  22. D. M. Dimiduk and J. H. Perepezko, MRS Bulletin 28, 2003 (639).

    Article  CAS  Google Scholar 

  23. J. H. Schneibel, R. O. Ritchie, J. J. Kruzic and P. F. Tortorelli, Metallurgical and Materials Transactions A 36, 2005 (525).

    Article  Google Scholar 

  24. S. H. Ehrmann, S. K. Friedlander and M. R. Zachariah, Journal of Materials Research 14, 1999 (4551).

    Article  Google Scholar 

  25. Steffen Burk, Bronislava Gorr, Hans-Jürgen Christ, Daniel Schliephake, Martin Heilmaier, Christian Hochmuth and Uwe Glatzel, Scripta Materialia 66, 2012 (223).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S. Majumdar wishes to thank Alexander von Humboldt Foundation, Bonn for financial support of the research stay at Siegen. The research support by Deutsche Forschungsgemeinschaft (DFG) within the framework of the research unit 727 “Beyond Ni-Base Superalloys” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjib Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, S., Burk, S., Schliephake, D. et al. A Study on Effect of Reactive and Rare Earth Element Additions on the Oxidation Behavior of Mo–Si–B System. Oxid Met 80, 219–230 (2013). https://doi.org/10.1007/s11085-013-9374-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9374-2

Keywords

Navigation