Log in

Cyclic Oxidation of Heat Resisting Steels

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Standard cast, heat resisting steels containing 25–29 w/o (weight percent) chromium and 30–36 w/o nickel together with cast alloys containing 45 or 60 w/o nickel plus low levels of aluminium were subjected to cyclic oxidation in air at 1000 and 1150°C. The standard materials suffered rapid weight loss which was somewhat mitigated by the presence of cerium. The 45 w/o nickel alloys were much more resistant and the 60 w/o nickel alloys showed superior resistance to cyclic oxidation. This improvement was due to alumina formation at or near the alloy surface. In the absence of aluminium, alloys underwent subsurface chromium carbide oxidation at a rate independent of alloy chromium content. This effect is shown to be a consequence of rapid oxygen diffusion along internal phase boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Baleix G. Bernhart P. Lours (2002) Materials Science and Engineering A. 327 155 Occurrence Handle10.1016/S0921-5093(01)01529-5

    Article  Google Scholar 

  2. W. Steinkusch, in Cyclic Oxidation of High Temperature Materials, M. Schutze and W. J. Quadakkers, eds. (Institute of Materials, London, 1999) pp. 307–323.

  3. A. DeS. Brasunaas J. T. Gow O. E. Harder (1966) Proceeding of ASTM 46 870

    Google Scholar 

  4. K. Ledggeff A. Rahmel M. Schorr (1979) Werkstoffe u. Korros. 30 767 Occurrence Handle10.1002/maco.19790301102

    Article  Google Scholar 

  5. D.J. Young (1982) High Temperature Technology 1 101

    Google Scholar 

  6. N. Belen P. Tomaszewicz D. J. Young (1984) Oxidation of Metals 22 227 Occurrence Handle10.1007/BF00656577

    Article  Google Scholar 

  7. C. Wagner (1968) Corrosion Science 8 889 Occurrence Handle10.1016/S0010-938X(68)80142-8

    Article  Google Scholar 

  8. C. Wagner (1959) Z. Elektrochem. 63 772

    Google Scholar 

  9. R. A. Rapp (1965) Corrosion 21 382

    Google Scholar 

  10. B. A. Pint (1996) Oxidation of Metals 45 1 Occurrence Handle10.1007/BF01046818

    Article  Google Scholar 

  11. M. J. Bennett J. B. Price (1981) Journal of Material Science 60 170 Occurrence Handle10.1007/BF00552071

    Article  Google Scholar 

  12. H. Hindam D. Whittle (1982) Oxidation of Metals 18 245 Occurrence Handle10.1007/BF00656571

    Article  Google Scholar 

  13. C. Wagner (1959) Zeitschrift Fur Elektrocheme 63 772

    Google Scholar 

  14. J. W. Park C. J. Altstetter (1987) Metallurgical Transactions A 18 43

    Google Scholar 

  15. J. A. Nesbitt R. W. Heckel (1987) Metallurgical Transactions A 18 2075

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, P., Panasko, M. & Young, D.J. Cyclic Oxidation of Heat Resisting Steels. Oxid Met 64, 281–301 (2005). https://doi.org/10.1007/s11085-005-8528-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-005-8528-2

Keywords

Navigation