Log in

Enhancing plasma jet parameters control by external magnetic field strength variation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influence of gas flow rate on gas temperature in the plasma jet. It is observed that gas temperature gradually drops with a growth in the flow rate of argon gas. The voltage and current waves have a sinusoidal waveform without elevation lines and with decaying waveforms. The existence of a strong magnetic field generates magnetohydrodynamic instability, leading to the plasma jet flame splitting. Understanding the effects of changing the strength of the external magnetic field on the plasma properties provides the ability to control the plasma Permart to make it suitable for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The author declare that the data supporting the findings of this study are available within the manuscript.

References

  • Aadim, K.A., Mazhir, S.N., Abdalameer, N.K., Ali, A.H.: Influence of gas flow rate on plasma parameters produced by a plasma jet and its spectroscopic diagnosis using the OES technique. IOP Conf. Ser.: Mater. Sci. Eng. 987(1), 12020 (2020)

    Article  Google Scholar 

  • Abbas, I.K., Aadim, K.A.: Spectroscopic diagnosis of cobalt plasma produced by OES technique and influence of applied voltage on plasma parameters. Iraqi J. Sci. 64(5), 2271–2281 (2023)

    Article  Google Scholar 

  • Abbas, Q.A., Ahmed, A.F., Mutlak, F.A.H.: Spectroscopic analysis of magnetized hollow cathode discharge plasma characteristics. Optik 242, 167260 (2022)

    Article  Google Scholar 

  • Abd, A.K., Abbas, Q.A.: Spectral analysis of the effects of variation in electrodes area for dielectric barrier discharge actuator. Iraqi J. Sci. 64(4), 1691–1703 (2023)

    Article  Google Scholar 

  • Ahmed, A., Yaseen, W., Abbas, Q., Mutlak, F.: Plasma treatment efect on SnO2–GO nano-heterojunction: fabrication, characterization and optoelectronic applications. Appl. Phys. A 127, 746 (2021)

    Article  ADS  Google Scholar 

  • Ahmed, A.F., Mutlak, F.A.H., Abbas, Q.A.: Evaluation of cold plasma effect to achieve fullerene and zinc oxide-fullerene hydrophobic thin films. Appl. Phys. A 128, 147 (2022)

    Article  ADS  Google Scholar 

  • Ahmed, R.T., Ahmed, A.F., Aadim, K.A.: Influence of laser energy on structural and morphology properties of CdO and CdO: Sn production by laser-induced plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01291-x

    Article  Google Scholar 

  • Al-Khafaji, T.K.: Treatment with dielectric barrier discharge (DBD) plasma restricts aspergillus niger growth isolated from wheat grain. Baghdad Sci. J. 20(4), 1480–1488 (2023a)

    Article  Google Scholar 

  • Al-Khafaji, T.K.: Design and development of atmospheric pressure DBD Ar plasma jet for investigating cotton fabric hydrophilicity. Iraqi J. Appl. Phys. 19(4C), 205–210 (2023b)

    Google Scholar 

  • Andrade, D.F., Pereira-Filho, E.R., Amarasiriwardena, D.: Current trends in laser-induced breakdown spectroscopy: a tutorial review. Appl. Spectrosc. Rev. 56(2), 98–114 (2021)

    Article  ADS  Google Scholar 

  • Bekeschus, S., Schmidt, A., Weltmann, K.-D., von Woedtke, T.: The plasma jet kINPen–A powerful tool for wound healing. Clin. Plasma Med. 4(1), 19–28 (2016)

    Article  Google Scholar 

  • Benedikt, J., Raballand, V., Yanguas-Gil, A., Focke, K., von Keudell, A.: Thin film deposition by means of atmospheric pressure microplasma jet. Plasma Phys. Control. Fusion 49, 419-B427 (2007)

    Article  ADS  Google Scholar 

  • Boeuf, J.P., Garrigues, L.: E× B electron drift instability in hall thrusters: particle-in-cell simulations vs. theory. Phys. Plasmas 25(6), 61204 (2018)

    Article  Google Scholar 

  • Bonizzoni, G., Vassallo, E.: Plasma physics and technology; industrial applications. Vacuum 64(3–4), 327–336 (2002)

    Article  ADS  Google Scholar 

  • Boulos, M.I., Fauchais, P.L., Pfender, E.: The plasma state. In: Boulos, M.I., Fauchais, P.L., Pfender, E. (eds.) Handbook of thermal plasmas, pp. 3–55. Springer, Cham (2023)

    Chapter  Google Scholar 

  • Chen, Z., Zhao, Z., Wu, J.: Application of atmospheric-pressure plasma treatment in anti-hairfalling of polyester–cotton fleece knitted fabrics. Polymers 15(9), 2097 (2023)

    Article  Google Scholar 

  • Ekpe, S.D., Jimenez, F.J., Field, D.J., Davis, M.J., Dew, S.K.: Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system. J. Vac. Sci. Technol. A 27(6), 1275–1280 (2009)

    Article  Google Scholar 

  • Fathi, S.M., Kadhim, S.J.: optical emission spectroscopy for studying Fe plasma parameters produced by exploding wire technique in carbon nanotubes - water colloid. Iraqi J. Sci. 63(1), 163–169 (2022). https://doi.org/10.24996/ijs.2022.63.1.17

    Article  Google Scholar 

  • Fitzpatrick, R.: Plasma physics: an introduction. Crc Press, Boca Raton (2022)

    Book  Google Scholar 

  • Ganguli, G., Crabtree, C., Fletcher, A., Amatucci, B.: Behavior of compressed plasmas in magnetic fields. Rev. Mod. Plasma Phys. (2020). https://doi.org/10.1007/s41614-020-00048-41

    Article  Google Scholar 

  • Gershman, S., Belkind, A.: Plasma diagnostics part 2 optical emission spectroscopy. Vac. Coat. Technol. 10(8), 38–47 (2009)

    Google Scholar 

  • Gibbon, P.: Introduction to plasma physics. ar**v Prepr (2020). https://doi.org/10.48550/ar**v.2007.04783

    Article  Google Scholar 

  • Halgamuge, M.N., Abeyratne, C.D., Mendis, P.: Effect of cyclotron resonance frequencies in particles due to AC and DC electromagnetic fields. World Acad. Sci. Eng. Technol. 40, 416–419 (2009)

    Google Scholar 

  • Hameed, T.A., Kadhe, S.J.: Plasma diagnostic of gliding arc discharge at atmospheric pressure. Iraqi J. Sci. 60(12), 2649–2655 (2019). https://doi.org/10.24996/ijs.2019.60.12.14

    Article  Google Scholar 

  • Heidbrink, W.W., White, R.B.: Mechanisms of energetic-particle transport in magnetically confined plasmas. Phys. Plasmas 27, 030901 (2020). https://doi.org/10.1063/1.5136237]

    Article  ADS  Google Scholar 

  • Humud, H.R., Hussein, S.: Optical emission spectroscopy for studying the exploding copper wire plasma parameters in distilled water. Iraqi J. Phys. 15(35), 142–147 (2017)

    Article  Google Scholar 

  • Humud, H.R., Kadhem, S.J., Abbass, A.A.: Synthesis of nanostructure diamond-like carbon thin films by atmospheric pressure plasma jet. AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0027500

    Article  Google Scholar 

  • Hussein, N.K., Kadhem, S.J.: Spectroscopic diagnosis of arc carbon and magnesium Plasma. Iraqi J. Sci. 63(6), 2492–2501 (2022). https://doi.org/10.24996/ijs.2022.63.6.16

    Article  Google Scholar 

  • Hussein, T.S., Ahmed, A.F., Aadim, K.A.: Spectroscopic analysis of CdO: Fe plasma generated by Nd: YAG laser. Iraqi J.sci. 63(2), 548–555 (2022)

    Article  Google Scholar 

  • Jamroz, P., Zyrnicki, W.: Optical emission characteristics of glow discharge in the N2–H2–Sn(CH3)4 and N2–Ar–Sn(CH3)4 mixtures. Surf. Coat. Technol. 201, 1444–1453 (2006)

    Article  Google Scholar 

  • **, S., Nie, L., Liu, D., Lu, X.: A magnetic field induced cold atmospheric pressure air plasma jet. IEEE Trans. Plasma Sci. 51(1), 60–65 (2023). https://doi.org/10.1109/TPS.2022.3225319

    Article  ADS  Google Scholar 

  • Kadhem, S.J.: Preparation of Al2O3/PVA nanocomposite thin films by a plasma jet method. Sci. Technol. Indones. 8(2), 471–478 (2023)

    Article  Google Scholar 

  • Kalita, D., Kakati, B., Saikia, B.K., Bandyopadhyay, M., Kausik, S.S.: Measurement of electron energy probability function in weakly magnetized plasma. J. Phys. Conf. Ser. 823, 012068 (2017)

    Article  Google Scholar 

  • Keudell, A.V., Von Der Gathen, V.S.: Foundations of low-temperature plasma physics—an introduction. Plasma Sour. Sci. Technol. 26(11), 113001 (2017)

    Article  ADS  Google Scholar 

  • Koskinen, H.E.J., Kilpua, E.K.J.: Charged particles in near-earth space. In: Koskinen, H.E.J., Kilpua, E.K.J. (eds.) Physics of earth’s radiation belts: Theory and Observations, pp. 27–61. Springer, Cham (2002)

    Google Scholar 

  • Kramida, N. A. T., Ralchenko, A., Reader, Y.: NIST Atomic Spectra Database (version 5.9). (2024)

  • Lee, H.J.: Fundamentals of theoretical plasma physics: mathematical description of plasma waves. World Scientific, Singapore (2019)

    Book  Google Scholar 

  • Ley, H.H.: Analytical methods in plasma diagnostic by optical emission spectroscopy: a tutorial review. J. Sci. Technol. 6(1), 12 (2014)

    Google Scholar 

  • Liu, C., Zhao, C., Jardin, S.C., Ferraro, N.M., Soldan, C.P., Liu, Y., Lyons, B.C.: Self-consistent simulation of resistive kink instabilities with runaway electrons. Plasma Phys. Control. Fusion 63, 125031 (2021)

    Article  ADS  Google Scholar 

  • Lu, X., Reuter, S., Laroussi, M., Liu, D.: Nonequilibrium atmospheric pressure plasma jets: Fundamentals, diagnostics, and medical applications. CRC Press, Taylor & Francis Group (2019)

    Book  Google Scholar 

  • Lucken, R., Bourdon, A., Lieberman, M.A., Chabert, P.: Instability-enhanced transport in low temperature magnetized plasma. Phys. Plasmas (2019). https://doi.org/10.1063/1.5094422

    Article  Google Scholar 

  • Ma, C., Nikiforov, A., Hegemann, D., De Geyter, N., Morent, R., Ostrikov, K.K.: Plasma-controlled surface wettability: recent advances and future applications. Int. Mater. Rev. (2022). https://doi.org/10.1080/09506608.2022.2047420

    Article  Google Scholar 

  • Nayef, U.M., Hadi, A.J., Abdulridha, S.K., Mutlak, F.A.H., Ahmed, A.F.: Tin dioxide nanoparticles synthesized via laser ablation in various liquids medium. J. Opt. 52, 441–448 (2023)

    Article  Google Scholar 

  • Oughton, S., Matthaeus, W.H., Wan, M., Osman, K.T.: Anisotropy in solar wind plasma turbulence. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2041), 20140152 (2015)

    Article  ADS  Google Scholar 

  • Pillai, R.R., Thomas, V.: Plasma surface engineering of natural and sustainable polymeric derivatives and their potential applications. Polymers 15, 400 (2023). https://doi.org/10.3390/polym15020400

    Article  Google Scholar 

  • Priest, E.R.: MHD reconnection. Scholarpedia 6(2), 2371–6731 (2011)

    Article  ADS  Google Scholar 

  • Rodero, A., García, M.C.: Gas temperature determination of non-thermal atmospheric plasmas from the collisional broadening of argon atomic emission lines. J. Quant. Spectrosc. Radiat. Transf. 198, 93–103 (2017). https://doi.org/10.1016/j.jqsrt.2017.05.004

    Article  ADS  Google Scholar 

  • Roy, N.C., Talukder, M.R., Chowdhury, A.N.: OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet. Plasma Sci. Technol. 19, 125402 (2017)

    Article  ADS  Google Scholar 

  • Sasmazel, H.T., Alazzawi, M., Alsahib, N.K.A.: Atmospheric pressure plasma surface treatment of polymers and influence on cell cultivation. Molecules 26, 1665 (2021)

    Article  Google Scholar 

  • Szulc, M., Forster, G., Lopez, J.L.M., Schein, J.: Appl. Sci. 12, 6580 (2022)

    Article  Google Scholar 

  • Tobias Tschang, C.Y., Bergert, R., Mitic, S., Thoma, M.: Effect of external axial magnetic field on a helium atmospheric pressure plasma jet and plasma-treated water. J. Phys. D Appl. Phys. 53, 215202 (2020)

    Article  ADS  Google Scholar 

  • Tschang, C.Y.T., Bergert, R., Mitic, S., Thoma, M.: Effect of external axial magnetic field on a helium atmospheric pressure plasma jet and plasma -treated water. J. Phys. D:appl. Phys (2020). https://doi.org/10.1088/1361-6463/ab78d6

    Article  Google Scholar 

  • Underwood, T.C., Loebner, K.T.K., Miller, V.A., Cappelli, M.A.: Dynamic formation of stable current-driven plasma jets. Sci. Rep. 9(1), 2588 (2019). https://doi.org/10.1038/s41598-019-39827-6

    Article  ADS  Google Scholar 

  • Wang, Z., et al.: Recent advances in laser-induced breakdown spectroscopy quantification: from fundamental understanding to data processing. TrAC Trends Anal. Chem. 143, 116385 (2021)

    Article  Google Scholar 

  • Yamada, H., Kato, S., Shimizu, T., Fujiwara, M., Fujiwara, Y., Kim, J., Ikehara, S., Shimizu, N., Ikehara, Y., Sakakita, H.: Striation phenomena in a low temperature atmospheric pressure neon plasma jet by optical emission spectroscopy. Phys. Plasmas (2020). https://doi.org/10.1063/1.5124122

    Article  Google Scholar 

  • Yousef, A.A., Ahmed, A.F.: Spectroscopic analysis of DC-nitrogen plasma produced using copper electrodes. Iraqi J. Sci. 62(10), 3560–3569 (2021). https://doi.org/10.24996/ijs.2021.62.10.15

    Article  Google Scholar 

  • Zhang, G., Ren, J., Tang, H., Zhang, Z., Fu, Y., Zhang, Z., Cao, J.: Plasma diagnosis of an unclosed E× B drift thruster with a visible ionization zone. Plasma Sources Sci. Technol. 31(7), 75002 (2022)

    Article  Google Scholar 

  • Zhang, C., Huang, C.K., Joshi, C.: Self-organization of photoionized plasmas via kinetic instabilities. Rev. Mod. Plasma Phys. (2023). https://doi.org/10.1007/s41614-023-00135-2

    Article  Google Scholar 

  • Zhao, K., Sun, B., Lu, Y., Li, F., Liu, Y., Liu, X., Wang, K.: Experimental investigation on plasma jet deflection with magnetic fluid control based on PIV measurement. Plasma Sci. Technol. (2018). https://doi.org/10.1088/2058-6272/aae09b

    Article  Google Scholar 

  • Zhao, K., LI, F., Sun, B., Yang, H., Zhou, T., Sun, R.: Numerical and experimental investigation of plasma plume deflection with MHD flow control. Plasma Sci. Technol. 20(6), 065511 (2018a)

    Article  ADS  Google Scholar 

  • Zhao, K., Ming, M., LI, F., Lu, Y., Zhou, T., Wang, K., Meng, N.: Experimental study on plasma jet deflection and energy extraction with MHD control. Chin. J. Aeronaut. 33(6), 1602–1610 (2020)

    Article  Google Scholar 

  • Zhao, K., Lu, Y., Li, F., Hu, J., Ming, M., Wang, X., Li, S.: Experimental investigation on the effect of ionization seed mass fraction on gas plasma jet deflection. Acta Astronaut. 171(1), 257–264 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank University of Baghdad -Iraq for the logistic supports this work.

Funding

No fund has been received for this research study.

Author information

Authors and Affiliations

Authors

Contributions

S.K. contributed wrote the main manuscript text and all figures and reviewed the manuscript.

Corresponding author

Correspondence to Saba J. Kadhem.

Ethics declarations

Conflict of interest

The author has declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhem, S.J. Enhancing plasma jet parameters control by external magnetic field strength variation. Opt Quant Electron 56, 1118 (2024). https://doi.org/10.1007/s11082-024-07069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-07069-0

Keywords

Navigation