Log in

Quantum enhanced optical sensors in data optimization for huge communication network

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT)-based limited WSN (wireless sensor network) has garnered much interest and advancement over the past several years to enhance resource utilization and service delivery. IoT demands a more robust network for communication and an appropriate location for an energy-efficient WSN for data transport across heterogeneous devices. In addition to the large area that needs to be covered and the restricted communication range of the sensors, WSNs with a single sink may not be appropriate in applications like smart cities. Therefore, Multi-sink WSN solutions appear appropriate for these kinds of applications. Although they boost network speed, the lifespan of the network, and energy usage, multi-sink WSNs are becoming more common. This study leverages deep learning architectures to create a unique resource allocation approach for wireless sensor IoT networks that is both energy-efficient and data-optimized. In this work, the integration of the network’s energy efficiency, data optimization and optical wireless communication is processed. In this paper, we present Modified Bat for Node Optimization, a novel approach that uses reinforcement-based Q-learning approaches to improve energy efficiency and resource allocation in Multi-sink Wireless Sensor Networks (WSNs). Additionally, routing with multiple hops is necessary for the WSNS to gather information from sensor nodes and transmit it to the sinking node for decision-making. A reliable and energy-efficient way of communicating data between sensor nodes is provided by Optical Wireless Communication, which leverages RF technology. The best power distribution and relay selection are accomplished using the suggested strategy. Lowering total power transmission and achieving Quality of Service requirements improve resource allocation and relay selection. The simulation outcomes show that the proposed model outperforms traditional ones regarding throughput, energy efficiency, quality of service, frequency efficiency, and network longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abdul-Qawy, A.S.H., Almurisi, N.M.S., Tadisetty, S.: Classification of energy saving techniques for IoT-based heterogeneous wireless nodes. Procedia Comput. Sci. 171, 2590–2599 (2020)

    Article  Google Scholar 

  • Ahmed, Q.W., et al.: Ai-based resource allocation techniques in wireless sensor internet of things networks in energy efficiency with data optimization. Electronics 11(13), 2071 (2022)

    Article  Google Scholar 

  • Ali Imran, M., Flávia dos Reis, A., Brante, G., Valente Klaine, P., Demo Souza, R.: Machine learning in energy efficiency optimization. In: Machine Learning for Future Wireless Communications, pp. 105–117. John Wiley & Sons Ltd, New Jersey (2020)

    Chapter  Google Scholar 

  • Balachandran Nair Premakumari, S., Mohan, P., Subramanian, K.: An enhanced localization approach for energy conservation in wireless sensor network with Q deep learning algorithm. Symmetry 14(12), 2515 (2022)

    Article  ADS  Google Scholar 

  • Cao, K., Wang, B., Ding, H., Lv, L., Tian, J., Hu, H.: Achieving reliable and secure communications in wireless-powered NOMA systems. IEEE Trans. Veh. Technol. 70(2), 1978–1983 (2021)

    Article  Google Scholar 

  • Chen, B., Hu, J., Zhao, Y., Ghosh, B.K.: Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans. Syst., Man, Cybern.: Syst. 52(10), 6618–6629 (2022)

    Article  Google Scholar 

  • Chen, Z., Gao, L.: CURSOR: Configuration Update Synthesis Using Order Rules. Paper presented at the IEEE INFOCOM 2023-IEEE Conference on Computer Communications. (2023)

  • Cheng, B., Zhu, D., Zhao, S., Chen, J.: Situation-aware IoT service coordination using the event-driven SOA paradigm. IEEE Trans. Netw. Serv. Manag. 13(2), 349–361 (2016)

    Article  Google Scholar 

  • Dai, W., Zhou, X., Li, D., Zhu, S., Wang, X.: Hybrid parallel stochastic configuration networks for industrial data analytics. IEEE Trans. Ind. Inform. 18(4), 2331–2341 (2022)

    Article  Google Scholar 

  • Dai, X., **ao, Z., Jiang, H., Alazab, M., Lui, J.C.S., Dustdar, S.: Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things. IEEE Trans. Industr. Inf. 19(1), 480–490 (2023)

    Article  Google Scholar 

  • Fang, Y., Min, H., Wu, X., Wang, W., Zhao, X., Mao, G.: On-ramp merging strategies of connected and automated vehicles considering communication delay. IEEE Trans. Intell. Transp. Syst. 23(9), 1–15 (2022)

    Article  Google Scholar 

  • Gao, J., Wu, D., Yin, F., Kong, Q., Xu, L., Cui, S.: MetaLoc: learning to learn wireless localization. IEEE J. Sel. Areas Commun. 41(12), 3831–3847 (2023)

    Article  Google Scholar 

  • Goswami, P., Mukherjee, A., Hazra, R., Yang, L., Ghosh, U., Qi, Y., Wang, H.: AI based energy efficient routing protocol for intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 23, 1670–1679 (2021)

    Article  Google Scholar 

  • Goswami, P., Mukherjee, A., Maiti, M., Tyagi, S.K., Yang, L.: A neural network based optimal resource allocation method for secure IIoT network. IEEE Internet Things J. 9, 2538–2544 (2022)

    Article  Google Scholar 

  • Gulganwa, P., Jain, S.: EES-WCA: Energy efficient and secure weighted clustering for WSN using machine learning approach. Int. J. Inf. Technol. 14, 135–144 (2022)

    Google Scholar 

  • Guo, Y., Zhang, C., Wang, C., Jia, X.: Towards public verifiable and forward-privacy encrypted search by using blockchain. IEEE Trans. Dependable Secure Comput. 20(3), 2111–2126 (2023)

    Article  Google Scholar 

  • Han, Y., Wang, B., Guan, T., Tian, D., Yang, G., Wei, W., Chuah, J.: Research on road environmental sense method of intelligent vehicle based on tracking check. IEEE Trans. Intell. Transp. Syst. 24, 1–15 (2022)

    Article  Google Scholar 

  • Hu, J., Wu, Y., Li, T., Ghosh, B.K.: Consensus control of general linear multiagent systems with antagonistic interactions and communication noises. IEEE Trans. Autom. Control 64(5), 2122–2127 (2019)

    Article  MathSciNet  Google Scholar 

  • Jiang, Y., Li, X.: Broadband cancellation method in an adaptive co-site interference cancellation system. Int. J. Electron. 109(5), 854–874 (2022)

    Article  Google Scholar 

  • Jiang, S., Zhao, C., Zhu, Y., Wang, C., Du, Y., Lei, W.: A practical and economical ultra-wideband base station placement approach for indoor autonomous driving systems. J. Adv. Transp. 2022, 1–12 (2022a)

    Google Scholar 

  • Jiang, H., Dai, X., **ao, Z., Iyengar, A.K.: Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mob. Comput. 22(7), 4000–4015 (2022)

    Article  Google Scholar 

  • Jiang, H., **ao, Z., Li, Z., Xu, J., Zeng, F.: An energy-efficient framework for internet of things underlaying heterogeneous small cell networks. IEEE Trans. Mob. Comput. 21(1), 31–43 (2022b)

    Article  Google Scholar 

  • Jiang, Y., Liu, S., Li, M., Zhao, N., & Wu, M.: A new adaptive co-site broadband interference cancellation method with auxiliary channel. Digital Communications and Networks. (2022)

  • Lenka, R.K., Rath, A.K., Sharma, S.: Building reliable routing infrastructure for green IoT network. IEEE Access 7, 129892–129909 (2019)

    Article  Google Scholar 

  • Li, L., Yao, L.: Fault tolerant control of fuzzy stochastic distribution systems with packet dropout and time delay. IEEE Trans. Autom. Sci. Eng. (2023). https://doi.org/10.1109/TASE.2023.3266065

    Article  Google Scholar 

  • Li, Q., Lin, H., Tan, X., Du, S.: Consensus for multiagent-based supply chain systems under switching topology and uncertain demands. IEEE Trans. Syst., Man, Cybern.: Syst. 50(12), 4905–4918 (2020)

    Article  Google Scholar 

  • Li, A., Masouros, C., Swindlehurst, A.L., Yu, W.: 1-Bit massive MIMO transmission: embracing interference with symbol-level precoding. IEEE Commun. Mag. 59(5), 121–127 (2021)

    Article  Google Scholar 

  • Li, J., Deng, Y., Sun, W., Li, W., Li, R., Li, Q.: Resource orchestration of cloud-edge–based smart grid fault detection. ACM Trans. Sen. Netw. 18(3), 1–26 (2022a)

    Article  Google Scholar 

  • Li, T., Li, Y., Hoque, M.A., **a, T., Tarkoma, S.: What extent we repeat ourselves? Discovering daily activity patterns across mobile app usage. IEEE Trans. Mob. Comput. 21(4), 1492–1507 (2022b)

    Article  Google Scholar 

  • Li, S., Chen, H., Chen, Y., **ong, Y., Song, Z.: Hybrid method with parallel-factor theory, a support vector machine, and particle filter optimization for intelligent machinery failure identification. Machines 11(8), 837 (2023)

    Article  Google Scholar 

  • Liu, G.: Data collection in MI-assisted wireless powered underground sensor networks: directions, recent advances, and challenges. IEEE Commun. Mag. 59(4), 132–138 (2021)

    Article  Google Scholar 

  • Liu, G.: A Q-Learning-based distributed routing protocol for frequency-switchable magnetic induction-based wireless underground sensor networks. Futur. Gener. Comput. Syst. 139, 253–266 (2023)

    Article  Google Scholar 

  • Liu, D., Cao, Z., Jiang, H., Zhou, S., **ao, Z.: Concurrent low-power listening: a new design paradigm for duty-cycling communication. ACM Trans. Sen. Netw. 19(1), 1–24 (2022)

    Article  Google Scholar 

  • Liu, C., Wu, T., Li, Z., Ma, T., Huang, J.: Robust online tensor completion for IoT streaming data recovery. IEEE Trans. Neural Netw. Learn. Syst. 34(12), 10178–10192 (2022)

    Article  MathSciNet  Google Scholar 

  • Liu, X., Lou, S., Dai, W.: Further results on system identification of nonlinear state-space models. Automatica 148, 110760 (2023)

    Article  MathSciNet  Google Scholar 

  • Luo, J., Zhao, C., Chen, Q., Li, G.: Using deep belief network to construct the agricultural information system based on internet of things. J. Supercomput. 78(1), 379–405 (2022)

    Article  Google Scholar 

  • Lyu, T., Xu, H., Zhang, L., Han, Z.: Source selection and resource allocation in wireless powered relay networks: an adaptive dynamic programming based approach. IEEE Internet of Things Journal. (2023)

  • Ma, K., et al.: Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay. IEEE Internet Things J. 8(17), 13343–13354 (2021)

    Article  Google Scholar 

  • Manzalini, A.: Quantum communications in future networks and services. Quantum Rep. 2(1), 221–232 (2020)

    Article  Google Scholar 

  • Min, H., Li, Y., Wu, X., Wang, W., Chen, L., Zhao, X.: A measurement scheduling method for multi-vehicle cooperative localization considering state correlation. Veh. Commun. 44, 100682 (2023)

    Google Scholar 

  • Nisioti, E., Thomas, N.: Fast Q-learning for improved finite length performance of irregular repetition slotted ALOHA. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 9, 11–24 (2020)

    Google Scholar 

  • Pan, S., Lin, M., Xu, M., Zhu, S., Bian, L.: A low-profile programmable beam scanning holographic array antenna without phase shifters. IEEE Internet Things J. 9(11), 8838–8851 (2022)

    Article  Google Scholar 

  • Priyadarshi, R., Gupta, B., Anurag, A.: Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. J. Supercomput. 76, 7333–7373 (2020)

    Article  Google Scholar 

  • Qiu, Y., Shi, M., Guo, X., Li, J., Wu, J., Zhou, Y.: Sensitivity improvement in the measurement of minor components by spatial confinement in fiber-optic laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B 209, 106800 (2023)

    Article  CAS  Google Scholar 

  • Qu, J., Mao, B., Li, Z., Xu, Y., Zhou, K., Cao, X.: Recent progress in advanced tactile sensing technologies for soft grippers. Adv. Func. Mater. 33(41), 2306249 (2023a)

    Article  CAS  Google Scholar 

  • Qu, J., Yuan, Q., Li, Z., Wang, Z., Xu, F., Fan, Q.: Xu, M, All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic gras**. Nano Energy 111, 108387 (2023b)

    Article  CAS  Google Scholar 

  • Shi, J., Niu, W., Li, Z., Shen, C., Zhang, J., Yu, S.: Optimal adaptive waveform design utilizing an end-to-end learning-based pre-equalization neural network in an UVLC system. J. Lightwave Technol. 41(6), 1626–1636 (2023)

    Article  ADS  Google Scholar 

  • Soundari, A.G., Jyothi, V.L.: Energy efficient machine learning technique for smart data collection in wireless sensor networks. Circuits Syst. Signal Process 39, 1089–1122 (2020)

    Article  Google Scholar 

  • Tyagi, S.K., Mukherjee, A., Pokhrel, S.R., Hiran, K.K.: An intelligent and optimal resource allocation ap-proach in sensor networks for smart agri-IoT. IEEE Sens. J. 21, 17439–17446 (2020)

    Article  Google Scholar 

  • Vajner, D.A., Rickert, L., Gao, T., Kaymazlar, K., Heindel, T.: Quantum communication using semiconductor quantum dots. Adv. Quantum Technol. 5(7), 2100116 (2022)

    Article  Google Scholar 

  • Wang, K., Zhang, B., Alenezi, F., Li, S.: Communication-efficient surrogate quantile regression for non-randomly distributed system. Inf. Sci. 588, 425–441 (2022)

    Article  Google Scholar 

  • Wang, Q., Li, P., Rocca, P., Li, R., Tan, G., Hu, N.: Interval-based tolerance analysis method for petal reflector antenna with random surface and deployment errors. IEEE Trans. Antennas Propag. 71(11), 8556–8569 (2023)

    Article  ADS  Google Scholar 

  • Wang, M., Wang, B., Zhang, R., Wu, Z., **ao, X.: Flexible Vis/NIR wireless sensing system for banana monitoring. Food Qual. Saf. 7, fyad025 (2023)

    Article  Google Scholar 

  • Wen, C., Huang, Y., Zheng, L., Liu, W., Davidson, T.: Transmit waveform design for dual-function radar-communication systems via hybrid linear-nonlinear precoding. IEEE Trans. Signal Process. 71, 2130–2145 (2023a)

    Article  ADS  MathSciNet  Google Scholar 

  • Wen, C., Huang, Y., Davidson, T.: N, Efficient transceiver design for mimo dual-function radar-communication systems. IEEE Trans. Signal Process. 71, 1786–1801 (2023b)

    Article  ADS  MathSciNet  Google Scholar 

  • Wu, H., **, S., Yue, W.: Pricing policy for a dynamic spectrum allocation scheme with batch requests and impatient packets in cognitive radio networks. J. Syst. Sci. Syst. Eng. 31(2), 133–149 (2022)

    Article  Google Scholar 

  • Xu, H., Han, S., Li, X., Han, Z.: Anomaly traffic detection based on communication-efficient federated learning in space-air-ground integration network. IEEE Trans. Wirel. Commun. 22(12), 9346–9360 (2023)

    Article  Google Scholar 

  • Xu, Y., Chen, H., Wang, Z., Yin, J., Shen, Q., Wang, D., Hu, X.: Multi-factor sequential re-ranking with perception-aware diversification. Paper presented at the KDD '23, New York, NY. (2023)

  • Yang, M., Liu, W., Liu, Z., Cai, C., Wang, Y.: Binocular vision-based method used for determining the static and dynamic parameters of the long-stroke shakers in low-frequency vibration calibration. IEEE Trans. Ind. Electron. 70(8), 8537–8545 (2023)

    Article  Google Scholar 

  • Zhang, X., Wang, Y., Yuan, X., Shen, Y., Lu, Z., Wang, Z.: Adaptive dynamic surface control with disturbance observers for battery/supercapacitor-based hybrid energy sources in electric vehicles. IEEE Trans. Transp. Electrif. 9, 5165–5181 (2022)

    Article  ADS  Google Scholar 

  • Zhang, C., **ao, P., Zhao, Z., Liu, Z., Yu, J., Hu, X.: A wearable localized surface plasmons antenna sensor for communication and sweat sensing. IEEE Sens. J. 23(11), 11591–11599 (2023)

    Article  ADS  Google Scholar 

  • Zhao, Z., Xu, G., Zhang, N., Zhang, Q.: Performance analysis of the hybrid satellite-terrestrial relay network with opportunistic scheduling over generalized fading channels. IEEE Trans. Veh. Technol. 71(3), 2914–2924 (2022)

    Article  Google Scholar 

  • Zheng, Y., Lv, X., Qian, L., Liu, X.: An optimal BP neural network track prediction method based on a GA– ACO hybrid algorithm. J. Marine Sci. Eng. 10(10), 1399 (2022)

    Article  Google Scholar 

  • Zheng, W., Gong, G., Tian, J., Lu, S., Wang, R., Yin, Z.: Design of a modified transformer architecture based on relative position coding. Int. J. Computat. Intell. Syst. 16(1), 168 (2023)

    Article  Google Scholar 

  • Zhijun, L., Yao, M., Bo, Q., **, Z., Qiong, L., Qian, Z.: Research on control technology of single detection based on position correction in quantum optical communication. Opto-Electron Eng. 49(3), 210311–210321 (2022)

    Google Scholar 

  • Zhou, G., Deng, R., Zhou, X., Long, S., Li, W., Lin, G.: Gaussian inflection point selection for LiDAR hidden echo signal decomposition. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

Download references

Acknowledgements

Research of Technological Important Programs in the city of Lüliang, China (No. 2022GXYF18); Teaching Reform and Innovation Project of Higher Education Department of Shanxi Province, No. J20221157.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

LG: Conceptualization, Methodology, Formal analysis, Supervision, Writing—original draft, Writing—review & editing. YN: Investigation, Data Curation, Validation, Resources, Writing—review & editing.

Corresponding author

Correspondence to Yahui Nan.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Nan, Y. Quantum enhanced optical sensors in data optimization for huge communication network. Opt Quant Electron 56, 422 (2024). https://doi.org/10.1007/s11082-023-06064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06064-1

Keywords

Navigation