Log in

Studying the impacts of M-fractional and beta derivatives on the nonlinear fractional model

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The major goal of the current research is to investigate the effects of fractional parameters on the dynamic response of soliton waves of fractional non-linear density-dependent reaction diffusion equation. Two well-known integration methodologies: the advanced \(\exp {(-\Theta (\xi ))}\)-expansion method and the modified auxiliary equation method in the sense of beta derivative and M-fractional derivative have been implemented to achieve explicit solitonic solutions of the fractional non-linear density-dependent reaction diffusion equation that emerged in mathematical biology. The spatial dynamics of populations, chemical concentrations, or other quantities are commonly studied using this equation type in biology, ecology, and chemistry. Solitary wave solutions of the governing equation, representing the dynamics of waves, plays a vital rule in many branches of biology, ecology, and chemistry. The obtained solutions has been studied in the form of singular kink-type solitary wave and kink-wave solutions. The behavior of soliton wave solutions is also demonstrated via 2D and 3D graphs. As a result of the fractional effects, physical changes are observed. The acquired results manifest that the proposed methods are more convenient, adequate, powerful and efficacious than other direct analytical methods. The attained results might improve our understanding of how waves propagate and could benefit the fields of medicine and allied sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

Not applicable.

References

  • Agarwal, R., Jain, S.N., Agarwal, R.P.: Analytic solution of generalized space time fractional reaction diffusion equation. Fract. Differ. Calc. 7(1), 169–184 (2017)

    MathSciNet  Google Scholar 

  • Ahmad, J., Rani, S., Turki, N.B., Shah, N.A.: Novel resonant multi-soliton solutions of time fractional coupled nonlinear Schrödinger equation in optical fiber via an analytical method. Results Phys. 52, 106761 (2023)

    Google Scholar 

  • Ahmad, J., Akram, S., Rehman, S.U., Turki, N.B., Shah, N.A.: Description of soliton and lump solutions to M-truncated stochastic Biswas–Arshed model in optical communication. Results Phys. 51, 106719 (2023)

    Google Scholar 

  • Ahmad, J., Akram, S., Noor, K., Nadeem, M., Bucur, A., Alsayaad, Y.: Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlinear optical fiber. Sci. Rep. 13(1), 10877 (2023)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Akbar, M.A., Ali, N.H.M., Tanjim, T.: Outset of multiple soliton solutions to the nonlinear Schrodinger equation and the coupled Burgers equation. J. Phys. Commun. 3(9), 095013 (2019)

    Google Scholar 

  • Akram, S., Ahmad, J., Sarwar, S., Ali, A.: Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis. Opt. Quantum Electron. 55(5), 450 (2023)

    Google Scholar 

  • Alhami, R., Alquran, M.: Extracted different types of optical lumps and breathers to the new generalized stochastic potential-KdV equation via using the Cole-Hopf transformation and Hirota bilinear method. Opt. Quantum Electron. 54(9), 553 (2022)

    Google Scholar 

  • Ali, A., Ahmad, J., Javed, S.: Investigating the dynamics of soliton solutions to the fractional coupled nonlinear Schrödinger model with their bifurcation and stability analysis. Opt. Quantum Electron. 55(9), 829 (2023)

    Google Scholar 

  • Ali, A., Ahmad, J., Javed, S.: Exploring the dynamic nature of soliton solutions to the fractional coupled nonlinear Schrödinger model with their sensitivity analysis. Opt. Quantum Electron. 55(9), 810 (2023)

    Google Scholar 

  • Alquran, M.: Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV–Schrodinger equations. Opt. Quantum Electron. 53, 588 (2021)

    Google Scholar 

  • Alquran, M.: Physical properties for bidirectional wave solutions to a generalized fifth-order equation with third-order time-dispersion term. Results Phys. 28, 104577 (2021)

    Google Scholar 

  • Alquran, M., Alhami, R.: Analysis of lumps, single-stripe, breather-wave, and two-wave solutions to the generalized perturbed-KdV equation by means of Hirota’s bilinear method. Nonlinear Dyn. 109(3), 1985–1992 (2022)

    Google Scholar 

  • Alquran, M., Al-Khaled, K., Sivasundaram, S., Jaradat, H.M.: Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers-Huxley equation. Nonlinear Stud. 24, 235–244 (2017)

    MathSciNet  Google Scholar 

  • Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Google Scholar 

  • Atangana, A., Baleanu, D., Alsaedi, A.: Analysis of time-fractional Hunter–Saxton equation: A model of neumatic liquid crystal. Open Phys. 14(1), 145–149 (2016)

    Google Scholar 

  • Bashar, M.H., Tahseen, T., Shahen, N.H.M.: Application of the advanced \(\exp {(-\varphi (\xi ))}\)-expansion method to the nonlinear conformable time-fractional partial differential equations. Turkish J. Math. Comput. Sci. 13(1), 68–80 (2021)

    Google Scholar 

  • Cai, L., Lu, Y., Zhu, H.: Performance enhancement of on-chip optical switch and memory using Ge\(_2\)Sb\(_2\)Te\(_5\) slot-assisted microring resonator. Opt. Lasers Eng. 162, 107436 (2023). https://doi.org/10.1016/j.optlaseng.2022.107436

    Article  Google Scholar 

  • Cao, K., Wang, B., Ding, H., Lv, L., Tian, J., Hu, H., Gong, F.: Achieving reliable and secure communications in wireless-powered NOMA systems. IEEE Trans. Veh. Technol. 70(2), 1978–1983 (2021). https://doi.org/10.1109/TVT.2021.3053093

    Article  Google Scholar 

  • Chen, D., Wang, Q., Li, Y., Li, Y., Zhou, H., Fan, Y.: A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere 247, 125869 (2020). https://doi.org/10.1016/j.chemosphere.2020.125869

    Article  CAS  PubMed  Google Scholar 

  • Chung, K.L., Tian, H., Wang, S., Feng, B., Lai, G.: Miniaturization of microwave planar circuits using composite microstrip/coplanar-waveguide transmission lines. Alex. Eng. J. 61(11), 8933–8942 (2022). https://doi.org/10.1016/j.aej.2022.02.027

    Article  Google Scholar 

  • Feng, Y., Zhang, B., Liu, Y., Niu, Z., Fan, Y., Chen, X.: A D-band manifold triplexer with high isolation utilizing novel waveguide dual-mode filters. IEEE Trans. Terahertz Sci. Technol. 12(6), 678–681 (2022). https://doi.org/10.1109/TTHZ.2022.3203308

    Article  ADS  Google Scholar 

  • Frank, T.D.: Nonlinear Fokkar–Planck Equations: Fundamentals and Applications. Springer, New York (2005)

    Google Scholar 

  • Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method. Mod. Phys. Lett. B. 33(09), 1950106 (2019)

    MathSciNet  CAS  ADS  Google Scholar 

  • Ghanbari, B., Akgül, A.: Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Script. 95(7), 075201 (2020)

    CAS  ADS  Google Scholar 

  • Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov–Ivanov equation with conformable derivative. Front. Phys. 8, 167 (2020)

    Google Scholar 

  • Ghanbari, B., Kuo, C.K.: New exact wave solutions of the variable-coefficient \((1+ 1)-\)dimensional Benjamin-Bona-Mahony and \((2+1)-\)dimensional asymmetric Nizhnik–Novikov–Veselov equations via the generalized exponential rational function method. Eur. Phys. J. 134(7), 334 (2019)

    Google Scholar 

  • Ghanbari, B., Baleanu, D., Al Qurashi, M.: New exact solutions of the generalized Benjamin–Bona–Mahony equation. Symmetry 11(1), 20 (2018)

    ADS  Google Scholar 

  • Guner, O., Bekir, A.: Exact solutions of some fractional differential equations arising in mathematical biology. Int. J. Biomath. 8(1), 1550003 (2015)

    MathSciNet  Google Scholar 

  • Guo, C., Hu, J., Hao, J., Čelikovskỳ, S., Hu, X.: Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions. Kybernetika 59(3), 342–364 (2023). https://doi.org/10.14736/kyb-2023-3-0342

    Article  MathSciNet  Google Scholar 

  • Hafez, M.G., Lu, D.: Traveling wave solutions for space-time fractional nonlinear evolution equations. ar**v preprint ar**v:1512.00715, (2015)

  • **, H.Y., Wang, Z.: Asymptotic dynamics of the one-dimensional attraction–repulsion Keller–Segel model. Math. Methods Appl. Sci. 38(3), 444–457 (2015). https://doi.org/10.1002/mma.3080

    Article  MathSciNet  ADS  Google Scholar 

  • Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)

    MathSciNet  Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  Google Scholar 

  • Khater, M., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques. Eur. Phys. J. 136(4), 1–28 (2021)

    Google Scholar 

  • Khatun, M.A., Arefin, M.A., Uddin, M.H., İnç, M., Akbar, M.A.: An analytical approach to the solution of fractional-coupled modified equal width and fractional-coupled Burgers equations. J. Ocean Eng. Sci. (2022)

  • Li, J., Zhou, N., Sun, J., Zhou, S., Bai, Z., Lu, L., Chen, Q., Zuo, C.: Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light: Sci. Appl. 11(1), 154 (2022). https://doi.org/10.1038/s41377-022-00815-7

    Article  CAS  PubMed  ADS  Google Scholar 

  • Liu, L., Zhang, S., Zhang, L., Pan, G., Yu, J.: Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3225106

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng, Q., Ma, Q., Shi, Y.: Adaptive fixed-time stabilization for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control (2023). https://doi.org/10.1109/TAC.2023.3244151

    Article  MathSciNet  Google Scholar 

  • Merdan, M.: Solutions of time-fractional reaction-diffusion equation with modified Riemann–Liouville derivative. Int. J. Phy. Sci. 7(15), 2317–2326 (2012)

    CAS  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1998)

    Google Scholar 

  • Rahhman, M.M., Aktar, A., Roy, K.C.: Analytical solutions of nonlinear coupled Schrodinger-KdV equation via advance exponential expansion. Am. J. Math. Comput. Model. 3(3), 46–51 (2018)

    Google Scholar 

  • Rezazadeh, H., Batool, F., Inc, M., Akinyemi, L., Hashemi, M.S.: Exact traveling wave solutions of generalized fractional Tzitzeica-type nonlinear evolution equations in nonlinear optics. Opt. Quantum Electron. 55, 485 (2023)

    Google Scholar 

  • Roy, R., Akbar, M.A., Seadawy, A.R., Baleanu, D.: Search for adequate closed form wave solutions to space-time fractional nonlinear equations. Partial Differ. Equ. Appl. Math. 3, 100025 (2021)

    Google Scholar 

  • Sadiya, U., Inc, M., Arefin, M.A., Uddin, M.H.: Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine-Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 16(1), 594–607 (2022)

    Google Scholar 

  • Shahen, N.H.M., Bashar, M.H., Ali, M.S.: Dynamical analysis of long-wave phenomena for the nonlinear conformable space-time fractional (2+ 1)-dimensional AKNS equation in water wave mechanics. Heliyon 6(10), e05276 (2020)

    PubMed  PubMed Central  Google Scholar 

  • Shahen, N.H.M., Ali, M.S., Rahman, M.M.: Interaction among lump, periodic, and kink solutions with dynamical analysis to the conformable time-fractional Phi-four equation. Partial Differ. Equ. Appl. Math. 4, 100038 (2021)

    Google Scholar 

  • Souleymanou, A., Houwe, A., Kara, A.H., Rezazadeh, H., Akinyemi, L., Mukam, S.P., Doka, S.Y., Bouetou, T.B.: Explicit exact solutions and conservation laws in a medium with competing weakly nonlocal nonlinearity and parabolic law nonlinearity. Opt. Quantum Electron. 54(1), 1–15 (2023)

    Google Scholar 

  • Sousa, J.V.D.C., de Oliveira, E.C.: A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16(1), 83–96 (2018)

    Google Scholar 

  • Syam, M., Jaradat, H.M., Alquran, M.: A study on the two-mode coupled modified Korteweg-de Vries using the simplified bilinear and the trigonometric-function methods. Nonlinear Dyn. 90, 1363–1371 (2017)

    MathSciNet  Google Scholar 

  • Uddin, M.H., Zaman, U.H.M., Arefin, M.A., Akbar, M.A.: Nonlinear dispersive wave propagation pattern in optical fiber system. Chaos Solitons Fractals 164, 112596 (2022)

    MathSciNet  Google Scholar 

  • **ao, Y., Zhang, Y., Kaku, I., Kang, R., Pan, X.: Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renew. Sustain. Energy Rev. 151, 111567 (2021). https://doi.org/10.1016/j.rser.2021.111567

    Article  Google Scholar 

  • Xu, K., Guo, Y., Liu, Y., Deng, X., Chen, Q., Ma, Z.: 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology. IEEE Electron Device Lett. 42(8), 1120–1123 (2021). https://doi.org/10.1109/LED.2021.3091277

    Article  CAS  ADS  Google Scholar 

  • Yépez-Martínez, H., Gómez-Aguilar, J.F., Baleanu, D.: Beta-derivative and sub-equation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik 155, 357–365 (2018)

    ADS  Google Scholar 

  • Yin, Z., Liu, Z., Liu, X., Zheng, W., Yin, L.: Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecol. Indic. 154, 110765 (2023a). https://doi.org/10.1016/j.ecolind.2023.110765

    Article  Google Scholar 

  • Yin, L., Wang, L., Li, T., Lu, S., Yin, Z., Liu, X., Li, X., Zheng, W.: U-Net-STN: A novel end-to-end lake boundary prediction model. Land 12(8), 1602 (2023b). https://doi.org/10.3390/land12081602

    Article  Google Scholar 

  • Yin, L., Wang, L., Keim, B.D., Konsoer, K., Yin, Z., Liu, M., Zheng, W.: Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China. Ecol. Indic. 154, 110837 (2023c). https://doi.org/10.1016/j.ecolind.2023.110837

    Article  Google Scholar 

  • Yusuf, A., İnç, M., Baleanu, D.: Optical solitons with M-truncated and beta derivatives in nonlinear optics. Front. Phys. 7, 126 (2019)

    Google Scholar 

  • Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analyzing numerous travelling wave behavior to the fractional-order nonlinear Phi-4 and Allen–Cahn equations throughout a novel technique. Results Phys. 37, 105486 (2022a)

    Google Scholar 

  • Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analytical behavior of soliton solutions to the couple type fractional-order nonlinear evolution equations utilizing a novel technique. Alex. Eng. J. 61(12), 11947–11958 (2022b)

    Google Scholar 

  • Zhang, Y., He, Y., Wang, H., Sun, L., Su, Y.: Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg Lens. ACS Photonics 8(1), 202–208 (2021). https://doi.org/10.1021/acsphotonics.0c01269

    Article  CAS  Google Scholar 

  • Zhao, C., Cheung, C.F., Xu, P.: High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans. 101, 503–514 (2020). https://doi.org/10.1016/j.isatra.2020.01.038

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Authors extend their appreciation to the Deanship Scientific Research at King Khalid University for funding this work through large group Research Project under grant number: RGP2/422/44.

Funding

This research work was supported by the Deanship of Scientific Research at King Khalid University under grant number: RGP2/422/44.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FB. Data curation: MSS and SA. Formal analysis: UD and KMK. Investigation: HR. Methodology: FB, MSS. Writing—original draft: HA.

Corresponding author

Correspondence to Hijaz Ahmad.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, F., Suleman, M.S., Demirbilek, U. et al. Studying the impacts of M-fractional and beta derivatives on the nonlinear fractional model. Opt Quant Electron 56, 164 (2024). https://doi.org/10.1007/s11082-023-05634-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05634-7

Keywords

Navigation