Log in

Effects of integrability criterion on nonlinear Schrödinger equations with mixed derivatives: insights from the Rangwala–Rao equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study explores the impact of the integrability criterion on nonlinear Schrödinger (\(\mathcal {NLS}\)) equations with mixed derivatives, specifically focusing on the Rangwala–Rao (\({{\mathcal {R}}}{{\mathcal {R}}}\)) equation formulated by A. Rangwala in 1990. The objective of this investigation is to enhance our understanding of the dispersion effect by examining novel soliton wave solutions and their interactions. By doing so, we aim to gain insights into the behavior of the slowly changing envelope of the electric field and pulse propagation in optical fibers. To achieve this, we employ recent computational approaches, including the Sardar Sub-equation and modified rational methods, to identify distinctive solitary wave solutions for the analyzed model. The significance of studying the Rangwala–Rao equation lies in its potential contribution to the development of more efficient optical fiber communication systems. The presented numerical solutions in this paper showcase the dynamic nature of optical fiber pulse propagation, thereby highlighting the originality of this work compared to existing scholarly contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Akinyemi, L., Akpan, U., Veeresha, P., Rezazadeh, H., İnç, M.: Computational techniques to study the dynamics of generalized unstable nonlinear schrödinger equation. J. Ocean Eng. Sci. (2022)

  • Akinyemi, L., Inc, M., Khater, M.M., Rezazadeh, H.: Dynamical behaviour of chiral nonlinear schrödinger equation. Opt. Quant. Electron. 54(3), 191 (2022)

    Article  Google Scholar 

  • Ambrosio, V.: Nonlinear fractional schrödinger equations in, RN(Birkhäuser, 2021) (2021)

  • Bo, W.-B., Wang, R.-R., Fang, Y., Wang, Y.-Y., Dai, C.-Q.: Prediction and dynamical evolution of multipole soliton families in fractional schrödinger equation with the pt-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 111(2), 1577–1588 (2023)

    Article  Google Scholar 

  • Geng, X., Li, R., Xue, B.: A vector general nonlinear schrödinger equation with (m+ n) components. J. Nonlinear Sci. 30(3), 991–1013 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hermann, J., Schätzle, Z., Noé, F.: Deep-neural-network solution of the electronic schrödinger equation. Nat. Chem. 12(10), 891–897 (2020)

    Article  Google Scholar 

  • Khater, M.M.A., Alzaidi, J.F., Hussain, A.K.: Abundant solitary and semi-analytical wave solutions of nonlinear shallow water wave regime model. In: American Institute of Physics Conference Series, Vol. 2414 of American Institute of Physics Conference Series, p. 040098 (2023)

  • Khater, M.M.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Modern Phys. B 2350083 (2022)

  • Khater, M.M.: Computational traveling wave solutions of the nonlinear Rangwala–Rao model arising in electric field. Mathematics 10(24), 4658 (2022)

    Article  Google Scholar 

  • Khater, M.M.A.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37(9), 2350083 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  • Khater, M.M.A.: In surface tension; gravity-capillary, magneto-acoustic, and shallow water waves’ propagation. Eur. Phys. J. Plus 138(4), 320 (2023)

    Article  Google Scholar 

  • Khater, M.M.A.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos Solitons Fractals 169, 113232 (2023)

    Article  MathSciNet  Google Scholar 

  • Khater, M.M.A.: Prorogation of waves in shallow water through unidirectional Dullin-Gottwald-Holm model; computational simulations. Int. J. Mod. Phys. B 37(8), 2350071 (2023)

    Article  ADS  Google Scholar 

  • Khater, M.M.A.: In solid physics equations, accurate and novel soliton wave structures for heating a single crystal of sodium fluoride. Int. J. Mod. Phys. B 37(7), 2350068–139 (2023)

    Article  ADS  Google Scholar 

  • Khater, M.M.A.: Nonlinear elastic circular rod with lateral inertia and finite radius: dynamical attributive of longitudinal oscillation. Int. J. Mod. Phys. B 37(6), 2350052 (2023)

    Article  ADS  Google Scholar 

  • Khater, M.M.A.: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation. Heliyon 9, e13511 (2023)

    Article  Google Scholar 

  • Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos Solitons Fractals 167, 113098 (2023)

    Article  MathSciNet  Google Scholar 

  • Khater, M.M.A.: Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson-Pickering equation. Results Phys. 44, 106193 (2023)

    Article  Google Scholar 

  • Khater, M.M.A., Alfalqi, S.H., Alzaidi, J.F., Attia, R.A.M.: Plenty of accurate novel solitary wave solutions of the fractional Chaffee-Infante equation. Results Phys. 48, 106400 (2023)

    Article  Google Scholar 

  • Khater, M.M.A., Alfalqi, S.H., Alzaidi, J.F., Attia, R.A.M.: Novel soliton wave solutions of a special model of the nonlinear Schrödinger equations with mixed derivatives. Results Phys. 47, 106367 (2023)

    Article  Google Scholar 

  • Khater, M.M.A., Alfalqi, S.H., Alzaidi, J.F., Attia, R.A.M.: Analytically and numerically, dispersive, weakly nonlinear wave packets are presented in a quasi-monochromatic medium. Results Phys. 46, 106312 (2023)

    Article  Google Scholar 

  • Khater, M.M.A., Zhang, X., Attia, R.A.M.: Accurate computational simulations of perturbed Chen–Lee–Liu equation. Results Phys. 45, 106227 (2023)

    Article  Google Scholar 

  • Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear schrödinger equations. Appl. Math. Comput. 371, 124972 (2020)

    MathSciNet  MATH  Google Scholar 

  • Kudryashov, N.A.: Implicit solitary waves for one of the generalized nonlinear schrödinger equations. Mathematics 9(23), 3024 (2021)

    Article  Google Scholar 

  • Kudryashov, N.A.: Optical solitons of the resonant nonlinear schrödinger equation with arbitrary index. Optik 235, 166626 (2021)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Almost general solution of the reduced higher-order nonlinear schrödinger equation. Optik 230, 166347 (2021)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Method for finding optical solitons of generalized nonlinear schrödinger equations. Optik 261, 169163 (2022)

    Article  ADS  Google Scholar 

  • Liu, X.: Exact solitary wave solutions of the Rangwala–Rao equation. In: 2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering, IEEE, pp. 175–178 (2012)

  • Manzhos, S.: Machine learning for the solution of the schrödinger equation. Mach. Learn. Sci. Technol. 1(1), 013002 (2020)

    Article  Google Scholar 

  • Nisar, K.S., Inan, I.E., Inc, M., Rezazadeh, H.: Properties of some higher-dimensional nonlinear schrödinger equations. Results Phys. 31, 105073 (2021)

    Article  Google Scholar 

  • Nisar, K.S., Ali, K.K., Inc, M., Mehanna, M.S., Rezazadeh, H., Akinyemi, L.: New solutions for the generalized resonant nonlinear schrödinger equation. Results Phys. 33, 105153 (2022)

    Article  Google Scholar 

  • Özkan, Y.S., Yaşar, E., Seadawy, A.R.: A third-order nonlinear schrödinger equation: the exact solutions, group-invariant solutions and conservation laws. J. Taibah Univ. Sci. 14(1), 585–597 (2020)

    Article  Google Scholar 

  • Pelinovsky, D.E.: Instability of double-periodic waves in the nonlinear schrödinger equation. Front. Phys. 9, 599146 (2021)

    Article  Google Scholar 

  • Pfau, D., Spencer, J.S., Matthews, A.G., Foulkes, W.M.C.: Ab initio solution of the many-electron schrödinger equation with deep neural networks. Phys. Rev. Res. 2(3), 033429 (2020)

    Article  Google Scholar 

  • Pinar, Z., Rezazadeh, H., Eslami, M.: Generalized logistic equation method for kerr law and dual power law schrödinger equations. Opt. Quant. Electron. 52, 1–16 (2020)

    Article  Google Scholar 

  • Singh, S.S.: Exact solutions of kundu-eckhaus equation and Rangwala–Rao equation by reduction to liénard equation, Asian J. Math. Phys., Article ID ama0301 11 (2016)

  • Veeresha, P., Prakasha, D., Singh, J., Kumar, D., Baleanu, D.: Fractional Klein–Gordon–Schrödinger equations with Mittag-Leffler memory. Chin. J. Phys. 68, 65–78 (2020)

    Article  Google Scholar 

  • Wang, G.: A new (3+ 1)-dimensional schrödinger equation: derivation, soliton solutions and conservation laws. Nonlinear Dyn. 104(2), 1595–1602 (2021)

    Article  Google Scholar 

  • Wei, J., Wu, Y.: On some nonlinear Schrödinger equations. Pro. R. Soc. Edinburgh Sect. A Math., pp. 1–26 (2022)

  • Werther, M., Choudhury, S.L., Großmann, F.: Coherent state based solutions of the time-dependent schrödinger equation: hierarchy of approximations to the variational principle. Int. Rev. Phys. Chem. 40(1), 81–125 (2021)

    Article  Google Scholar 

  • Xu, L., Liu, C., Shi, Y., Yi, Z., Lv, J., Yang, L., Wang, J., Chu, P.K.: High-sensitivity photonic crystal fiber methane sensor with a ring core based on surface plasmon resonance and orbital angular momentum theory. Optik 170941 (2023)

  • Yokuş, A.: Construction of different types of traveling wave solutions of the relativistic wave equation associated with the schrödinger equation. Math. Model. Numer. Simul. Appl. 1(1), 24–31 (2021)

    MathSciNet  Google Scholar 

  • Younis, M., Sulaiman, T.A., Bilal, M., Rehman, S.U., Younas, U.: Modulation instability analysis, optical and other solutions to the modified nonlinear schrödinger equation. Commun. Theor. Phys. 72(6), 065001 (2020)

    Article  ADS  MATH  Google Scholar 

  • Yue, C., Peng, M., Higazy, M., Khater, M.M.A.: Exploring the wave solutions of a nonlinear non-local fractional model for ocean waves. AIP Adv. 13(5), 055121 (2023)

    Article  ADS  Google Scholar 

  • Yue, C., Peng, M., Higazy, M., Khater, M.M.A.: Modeling of plasma wave propagation and crystal lattice theory based on computational simulations. AIP Adv. 13(4), 045223 (2023)

    Article  ADS  Google Scholar 

  • Yue, C., Higazy, M., Khater, O.M.A., Khater, M.M.A.: Computational and numerical simulations of the wave propagation in nonlinear media with dispersion processes. AIP Adv. 13(3), 035232 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I greatly thank the journal stuff (Editors and Reviewers) for their support and help.

Funding

No fund has been received for this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mostafa M. A. Khater.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khater, M.M.A. Effects of integrability criterion on nonlinear Schrödinger equations with mixed derivatives: insights from the Rangwala–Rao equation. Opt Quant Electron 55, 779 (2023). https://doi.org/10.1007/s11082-023-04993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04993-5

Keywords

Mathematics Subject Classification

Navigation