Log in

Structure of optical soliton solutions for the generalized higher-order nonlinear Schrödinger equation with light-wave promulgation in an optical fiber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, we investigate unprecedented optical closed form of solutions for the generalized higher-order nonlinear Schrödinger equation. This vital model in the optical fiber. Schrödinger equation describes the promulgation of the light-wave in an optical fiber. To achieve the desired objective of the search we apply a generalized Kudryashov method. This method is considered as one of the recent methods that developed in last decades. In this discussion, we discuss what differentiates this method from other methods in the field of finding precise solutions to non-linear partial differential equations and that debate takes place using two axes. The first is comparing the same way with the other ways ahead of this area while the second axis is comparing the solutions obtained using this method with solutions found using other methods and how these solutions converge and how much able to be utilized in that modern method (Generalized Kudryashov method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J.B.: A random-walk simulation of the Schrödinger equation: H+ 3. J. Chem. Phys. 63(4), 1499–1503 (1975)

    Article  ADS  Google Scholar 

  • Arnous, A.H., Seadawy, A.R., Alqahtani, R.T., Biswas, A.: Optical solitons with complex Ginzburg–Landau equation by modified simple equation method. Optik Int. J. Light Electron Opt. 144, 475–480 (2017)

    Article  Google Scholar 

  • Arshad, M., Seadawy, A., Lu, D., Wang, J.: Travelling wave solutions of Drinfel’d–Sokolov–Wilson, Whitham–Broer–Kaup and (2+1)-dimensional Broer–Kaup–Kupershmit equations and their applications. Chin. J. Phys. 55, 780–797 (2017a)

    Article  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D.: Exact Bright–Dark solitary wave solutions of the higher-order cubic-quintic nonlinear Schrödinger equation and its stability. Optik 138, 40–49 (2017b)

    Article  ADS  Google Scholar 

  • Arshad, M., Seadawy, A., Dianchen, L.: Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrodinger equation and its applications in mono-mode optical fibers. Superlattices and Microstruct. 113, 419–429 (2018)

    Article  ADS  Google Scholar 

  • Baskonus, H.M., Sulaiman, T.A., Bulut, H.: New solitary wave solutions to the (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff and the Kadomtsev–Petviashvili hierarchy equations. Indian J. Phys. 135, 327–336 (2017)

    Google Scholar 

  • Biswas, A., Arnous, A.H., Ekici, M., Sonmezoglu, A., Seadawy, A.R., Zhou, Q., Mahmood, M.F., Moshokoa, S.P., Belic, M.: Optical soliton perturbation in magneto-optic waveguides. J. Nonlinear Opt. Phys. Mater. 27(1), 1850005 (2018)

    Article  ADS  Google Scholar 

  • Brif, C., Chakrabarti, R., Rabitz, H.: Control of quantum phenomena: past, present and future. New J. Phys. 12(7), 075008 (2010)

    Article  ADS  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M.: New solitary and optical wave structures to the Korteweg–de Vries equation with dual-power law nonlinearity. Opt. Quantum Electron. 48, 564 (2016)

    Article  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M.: On the new soliton and optical wave structuresto some nonlinear evolution equations. Eur. Phys. J. Plus 132, 459 (2017a)

    Article  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M., Sandulyak, A.A.: New solitary and optical wave structures to the (1 + 1)-dimensional combined KdV-mKdV equation. Optik 135, 327–336 (2017b)

    Article  ADS  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M., Yazgan, T.: Novel hyperbolic behaviors to some important models arising in quantum science. Opt. Quantum Electron. 49, 349 (2017c)

    Article  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Optical solitons to the resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions under Kerr law nonlinearity. Optik 163, 49–55 (2018a)

    Article  ADS  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M., Akturk, T.: Complex acoustic gravity wave behaviors to some mathematical models arising in fluid dynamics and nonlinear dispersive media. Opt. Quantum Electron. 50, 19 (2018b)

    Article  Google Scholar 

  • Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal. Theory Methods Appl. 14(10), 807–836 (1990)

    Article  Google Scholar 

  • Dai, C.-Q., Zhang, J.-F.: New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients. J. Phys. A Math. Gen. 39(4), 723 (2006)

    Article  ADS  Google Scholar 

  • Dianchen, L., Seadawy, A., Khater, M.: Bifurcations of new multi soliton solutions of the van der Waals normal form for fluidized granular matter via six different methods. Results Phys. 7, 2028–2035 (2017)

    Article  ADS  Google Scholar 

  • Dianchen, L., Seadawy, A., Arshad, M.: Bright–Dark optical soliton and dispersive elliptic function solutions of unstable nonlinear Schrodinger equation and its applications. Opt. Quantum Electron. 50(23), 1–10 (2018)

    Google Scholar 

  • Dysthe, K.B.: Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. In: Proc. R. Soc. Lond. A, vol. 369, no. 1736, pp. 105–114. The Royal Society (1979)

  • Esen, A., Sulaiman, T.A., Bulut, H., Baskonus, H.M.: Optical solitons to the space–time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)

    Article  ADS  Google Scholar 

  • Feit, M.D., Fleck Jr., J.A.: Solution of the Schrödinger equation by a spectral method II: vibrational energy levels of triatomic molecules. J. Chem. Phys. 78(1), 301–308 (1983)

    Article  ADS  Google Scholar 

  • Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  • Hao, R., Li, L., Li, Z., Zhou, G.: Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. Phys. Rev. E 70(6), 066603 (2004)

  • Harmand, M., Coffee, R., Bionta, M.R., Chollet, M., French, D., Zhu, D., Fritz, D.M.: Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat. Photonics 7(3), 215–218 (2013)

    Article  ADS  Google Scholar 

  • Khater, A.H., Callebaut, D.K., Helal, M.A., Seadawy, A.R.: Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line. Eur. Phys. J. D 39, 237–245 (2006)

    Article  ADS  Google Scholar 

  • Kocharovskaya, O.A., Khanin, Y.I.: Coherent amplification of an ultrashort pulse in a three-level medium without a population inversion. Soviet J. Exp. Theor. Phys. Lett. 48, 630 (1988)

    Google Scholar 

  • Kohn, W., Rostoker, N.: Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys. Rev. 94(5), 1103–1111 (1954)

    Article  ADS  Google Scholar 

  • Kosloff, D., Kosloff, R.: A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comput. Phys. 52(1), 35–53 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • Kostin, M.D.: On the Schrödinger–Langevin equation. J. Chem. Phys. 57(9), 3589–3591 (1972)

    Article  ADS  Google Scholar 

  • Krausz, F., Stockman, M.I.: Attosecond metrology: from electron capture to future signal processing. Nat. Photonics 8(3), 205–213 (2014)

    Article  ADS  Google Scholar 

  • Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett. 90(11), 113902 (2003)

  • Kudryashov, N.A.: Exact solutions of the generalized Kuramoto–Sivashinsky equation. Phys. Lett. A 147(5–6), 287–291 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • Mirzazadeh, M., Yildirim, Y., Yasar, E., Triki, H., Zhou, Q., Moshokoa, S.P., Ullah, M.Z., Seadawy, A.R., Biswas, A., Belic, M.: Optical solitons and conservation law of Kundu–Eckhaus equation. Optik Int. J. Light Electron Opt. 154, 551–557 (2018)

    Article  Google Scholar 

  • Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1079–1084 (1966)

    Article  ADS  Google Scholar 

  • Ostlund, S., Rahul, P., David, R., Hans Joachim, S., Eric, D.: One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50(23), 1873 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • Porsezian, K., Shanmugha Sundaram, P., Mahalingam, A.: Coupled higher-order nonlinear Schrödinger equations in nonlinear optics: Painlev analysis and integrability. Phys. Rev. E 50(2), 1543 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  • Seadawy, A.R.: Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations. Appl. Math. Inf. Sci. 10(1), 209–214 (2016)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R.: Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma. Math. Methods Appl. Sci. 40(5), 1598–1607 (2017a)

    Article  ADS  MathSciNet  Google Scholar 

  • Seadawy, A.R.: Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions. J. Electromagn. Waves Appl. 31(14), 1353–1362 (2017b)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.: The generalized nonlinear higher order of KdV equations from the higher order nonlinear Schrodinger equation and its solutions. Optik Int. J. Light Electron Optics 139, 31–43 (2017c)

    Article  Google Scholar 

  • Seadawy, A.R., Dianchen, L.: Bright and Dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability. Res. Phys. 7, 43–48 (2017)

    Google Scholar 

  • Seadawy, A.R., Lu, D., Khater, M.M.A.: Bifuractions of traveling wave solutions for Dodd–Bullough–Mikhailov equation and coupled Higgs equation and their applications. Chin. J. Phys. 55, 1310–1318 (2017)

    Article  Google Scholar 

  • Shirley, J.H.: Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138(4B), B979 (1965)

    Article  ADS  Google Scholar 

  • Sulaiman, T.A., Aktürk, T., Bulut, H., Baskonus, H.M.: Investigation of various soliton solutions to the Heisenberg ferromagnetic spin chain equation. J. Electromagn. Waves Appl. 32, 1093–1105 (2018)

    Article  Google Scholar 

  • Yan, Z.: Generalized method and its application in the higher-order nonlinear Schrödinger equation in nonlinear optical fibres. Chaos Solitons Fractals 16(5), 759–766 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Zewail, A.H.: Laser femtochemistry. Science 242(4886), 1645–1653 (1988)

    Article  ADS  Google Scholar 

  • Zewail, A.H.: Femtochemistry. Past, present, and future. Pure Appl. Chem. 72(12), 2219–2231 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aly R. Seadawy or Dianchen Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seadawy, A.R., Lu, D. & Khater, M.M.A. Structure of optical soliton solutions for the generalized higher-order nonlinear Schrödinger equation with light-wave promulgation in an optical fiber. Opt Quant Electron 50, 333 (2018). https://doi.org/10.1007/s11082-018-1600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1600-3

Keywords

Navigation