Log in

Apparent distance theory revision for low-light-level night vision system based on noise factor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper introduces basic concept of the detection range of a low-light-level (LLL) imaging system, and on the basis of previous derivation of visual distance detection equation for the LLL imaging system, the influence of noise factor on visual distance of LLL night vision system is discussed emphatically. Image intensifier is the most important part of LLL night vision device and SNR is one of the important parameters of micro-light image intensifier, whose value determines the detection distance and image sharpness of LLL imaging system in low-light conditions. In this paper, using system noise factor relation, by modifying the noise factor, a more practical and perfect horizon detecting equation is established, and the horizon estimation is carried out with the experiment, and the practicability of the corrected Horizon formula is verified. It has a certain guiding significance for improvement of the LLL imaging system and the development of night vision technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blackler, F.G.: Image intensifiers and night viewing system performance. In: Jerrard, H.G. (ed.) Proceedings of Electron-Optics/Laser International’ 82UK Conference, pp. 130–139. Butterworth Scientific Press, London (1982)

    Google Scholar 

  • Csorba, I.P.: Image Tubes. International Standards Book, New York (1985)

    Google Scholar 

  • Di, H.G.: Laser assisted vision/low light level night driving technology. Master degree thesis, Nan**g University of Science and Technology (2004)

  • Fu, W.H.: The effect of flaring micro-channel on the relationship between current gain and noise factor. J. Appl. Opt. 25(5), 22–24 (2004)

    Google Scholar 

  • Higgins, G.C.: Methods for engineering photographic systems. Appl. Opt. 3(1), 1–10 (1964)

    Article  ADS  Google Scholar 

  • Jia, J.X., Wang, Y.M., Zhuang, X.Q., Yao, Y., Wang, S.W., Zhao, D., Shu, R., Wang, J.Y.: High spatial resolution shortwave infrared imaging technology based on time delay and digital accumulation method. Infrared Phys. Technol. 81, 305–312 (2017)

    Article  ADS  Google Scholar 

  • Jiang, X.J.: The LLL Television, pp. 100–105. Nation Defense Industry Press, Bei**g (1984)

    Google Scholar 

  • Kwak, J.Y., Ko, B.C., Nam, J.Y.: Pedestrian intention prediction based on dynamic fuzzy automata for vehicle driving at nighttime. Infrared Phys. Technol. 81, 41–51 (2017)

    Article  ADS  Google Scholar 

  • Li, W.: Visual range evaluation of LLL night vision system and its application. Ph.D. dissertation (Nan**g University of Science and Technology), pp. 68–73 (2001)

  • Li, S.C., Zhou, G.N., Zhao, B.S.: A method for estimating visual distance based on image processing technology. J. Photonics 35(3), 477–480 (2006)

    Google Scholar 

  • Liu, L.: Visual range evaluation of LLL night vision system with laser illuminator. Ph.D. dissertation, Nan**g University of Science and Technology (2005)

  • Liu, L., Chang, B.K.: New apparent distance-detecting equation for low-light-level imaging system. Opt. Eng. 43(2), 415–419 (2004a)

    Article  ADS  Google Scholar 

  • Liu, L., Chang, B.K.: Spectral matching coefficients of super S25 and new S25 photocathode and spectral reflectance spectra. J. Vac. Sci. Technol. 24(4), 276–278 (2004b)

    Google Scholar 

  • Liu, L., Qian, Y.S., Qiu, Y.F., Chang, B.K.: Laser assist/low light night driving design and field test. Infrared Laser Eng. 36(3), 361–364 (2007)

    Google Scholar 

  • Liu, S.T., Wang, B.L., Wang, L.T.: The distance estimation and simulation of the halo night vision. Laser Infrared 46(4), 462–469 (2016)

    Google Scholar 

  • Melik, Y., Omer, C., Atia, S., Shahbaz, A., Arman, G., Yasar, G.: A new high dynamic range ROIC with smart light intensity control unit. Infrared Phys. Technol. 82, 161–169 (2017)

    Article  Google Scholar 

  • Richards, E.A.: Fundamental limitations in the low light level performance of direct-view image intensifier systems. Infrared Phys. 8(1), 101–115 (1968)

    Article  ADS  Google Scholar 

  • Richards, E.A.: Limitations in optical imaging devices at low light levels. Appl. Opt. 8(10), 1999–2005 (1969a)

    Article  ADS  Google Scholar 

  • Richards, E.A.: Contrast-enhancement in imaging devices by selection of input photo-surface spectral response. Adv. Electron. Electron Phys. 28, 661–675 (1969b)

    Article  Google Scholar 

  • Richard, J.C., Lamport, D.L., Roaux, E., Vanneste, C.: Performances des system, de vision nocturne passive utilisant des tubes intensificateurs d’images influence de la response spectrale de la photo-cathode. Acta Electron. 20, 353–368 (1977)

    ADS  Google Scholar 

  • Rosell, F.A.: The limiting resolution of low-light-level imaging sensors. JOSA 59(5), 539–547 (1971)

    Article  ADS  Google Scholar 

  • Rosell, F.A., Willson, R.H.: Basics of detection, recognition and identification in electro-optical formed imagery. In: Proceedings of SPIE, vol. 33, pp. 107–122 (1973)

  • Schnitzler, A.D.: Low-light-level performance of visual system. Armed Service Technical Information Agency Documents, AD725831, Institute for Defense Analysis, Arlington, VA (1971)

  • Shi, S., Wu, S.: Radio Cooperative American Factory. Handbook of Optics. National Defence Press, Bei**g (1978)

    Google Scholar 

  • Vries, H.L.D.: The quantum character of light and its bearing upon the threshold of vision, the differential sensitivity and visual acuity of the eye. Physica 10(7), 553–564 (1943)

    Article  ADS  Google Scholar 

  • **ang, S.M.: The image intensifier SNR limit theory research. J. Appl. Opt. 29(5), 724–726 (2008)

    Google Scholar 

  • **ang, S.M., Ni, G.Q.: The Principle of the Photoelectric Imaging Devices. National Defense Industry Press, Bei**g (1999)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Qing Lan Project of Jiangsu Province-China, the Fundamental Research Funds for the Central Universities-China (Grant No. 30916011206) and the Six Talent Peaks Project in Jiangsu Province-China (Grant No. 2015-XCL-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, L., Deng, Y. et al. Apparent distance theory revision for low-light-level night vision system based on noise factor. Opt Quant Electron 49, 249 (2017). https://doi.org/10.1007/s11082-017-1087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1087-3

Keywords

Navigation