Log in

High speed intracavity-contacted vertical cavity surface emitting lasers with separated quantum wells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, the simulation of the 980 nm InGaAs intra-cavity-contacted oxide-confined vertical-cavity surface-emitting lasers (ICOC VCSELs) with separated triplets of quantum wells (STQW) is presented. We analyze the thermal, electrical and optical properties of such devices. Results of simulations show the larger optical power efficiency and higher modulation bandwidth for devices with included STQW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chu K.-M., Lee J.-S., Chu K.-M., Cho H.-S., Park H.-H. and Jeon D.-Y. (2004). A fluxless flip-chip bonding for VCSEL arrays using silver-coated indium solder bumps. IEEE Trans. Electron. Packag. Manuf. 27: 246–250

    Article  Google Scholar 

  • Hadley G.R., Botez D. and Mawst L.I. (1991). Modal discrimination in leaky-mode (antiguided) arrays [diode lasers]. IEEE J. Quantum. Electron. 27: 921–930

    Article  ADS  Google Scholar 

  • Katz J., Margalit S., Harder C., Wilt D. and Yariv A. (1981). The intrinsic electrical equivalent circuit of a laser diode. IEEE J. Quantum. Electron. 17: 4–7

    Article  ADS  Google Scholar 

  • Kim J.K., Hall E., Sjolund O., Almuneau G. and Coldren L.A. (1999). Room temperature, electrically-pumped multiple-active-region VCSEL’s with high differential efficiency at 1.55 mkm. Electron. Lett. 35: 1084–1085

    Article  Google Scholar 

  • Krishnamoorthy A.V., Chirovsky L.M.F., Hobson W.S., Lopata J., Shah J., Rozier R., Cunningham J.E. and D’Asaro L.A. (2000). Small-signal characteristics of bottom-emitting intracavity contacted VCSEL’s. IEEE Photon. Technol. Lett. 12: 609–611

    Article  ADS  Google Scholar 

  • Lear K.L. and Chalmers S.A. (1993). High single mode power conversion efficiency vertical cavity top surface emmiting lasers. IEEE Photon. Technol. Lett. 5: 972–974

    Article  ADS  Google Scholar 

  • Lysak V.V., Chang K.S. and Lee Y.T. (2005). Current crowding in graded contact layers of intracavity-contacted oxide-confinement vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 87: 231118

    Article  ADS  Google Scholar 

  • Lysak V.V., Chang K.S. and Lee Y.T. (2006). Top mirror optimization of high-speed intracavity-contacted oxide confinement vertical-cavity surface-emitting lasers. J. Optoelectron. Adv. Mater. 8: 355–358

    Google Scholar 

  • MacDougal M.H., Geske J., Lin C.-K., Bond A.E. and Dapkus P.D. (1998). Low resistance intracavity contacted oxide-aperture VCSEL’s. IEEE Photon. Technol. Lett. 10: 9–11

    Article  ADS  Google Scholar 

  • Nakwaski W. (1988). Thermal conductivity of binary, ternary and quaternary III-V compounds. J. Appl. Phys. 64: 159–166

    Article  ADS  Google Scholar 

  • PICS3D, User’s manual and reference manual, version 2002.2, Crosslight Inc., 2002

  • Piprek, J.: Semiconductor optoelectronics devices. Introduction to physics and simulation. pp. 279. Academic Press, Amsterdam (2003)

  • Raja M.Y.A., Brueck S.R.J., Osinski M., Raja C.F., Schaus M.Y.A., McInerney J.G., Brennan T.M. and Hammons B.E. (1988). Surface-emitting, multiple quantum well GaAs/AlGaAs laser with wavelength-resonant periodic gain medium. Appl. Phys. Lett. 53: 1678–1680

    Article  ADS  Google Scholar 

  • Sarzala R.P., Nakwaski W. and Osinski M. (1996). Comprehensive thermal-electrical self-consistent model of protonimplanted top-surface-emitting lasers’. Int. J. Optoelectron.10: 357–371

    Google Scholar 

  • Sarzala R.P. (2004). Modelling of the threshold operation of 1.3-mkm GaAs-based oxide-confined (InGa)As/GaAs quantum-dot vertical-cavity surface-emitting lasers. IEEE J. Quantum. Electron. 40: 629–639

    Article  ADS  Google Scholar 

  • Scott J.W., Geels R.S., Corzine S.W. and Coldren L.A. (1993). Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance. IEEE J. Quantum. Electron. 29: 1295–1308

    Article  ADS  Google Scholar 

  • Scott J.W., Thibeault B.J., Young D.B., Coldren L.A. and Peters F.H. (1994). High efficiency submilliamp vertical cavity lasers with intracavity contacts. IEEE Photon. Technol. Lett. 6: 678–680

    Article  ADS  Google Scholar 

  • Sukhoivanov I.A. (1999). Influence of gain saturation and carrier dynamic models on the modulation response of quantum well lasers. Opt. Quantum. Electron. 31: 997–1007

    Article  Google Scholar 

  • Wilmsen, C., Temkin, H., Coldren, L.A. (eds.): Vertical cavity surface emitting lasers: design, fabrication, characterization, and application. pp. 455. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • Wachutka G.R. (1990). Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. Comput. Aided Des. 9: 1141–1149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lysak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysak, V.V., Safonov, I.M., Song, Y.M. et al. High speed intracavity-contacted vertical cavity surface emitting lasers with separated quantum wells. Opt Quant Electron 40, 1219–1225 (2008). https://doi.org/10.1007/s11082-009-9305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-009-9305-2

Keywords

Navigation