Log in

An innovative fourth-order numerical scheme with error analysis for Lane-Emden-Fowler type systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we develop a novel higher-order compact finite difference scheme for solving systems of Lane-Emden-Fowler type equations. Our method can handle these problems without needing to remove or modify the singularity. To construct the method, initially, we create a uniform mesh within the solution domain and develop a new efficient compact difference scheme. The presented method approximates the derivatives at the boundary nodal points to effectively handle the singularity. Using a matrix analysis approach, we discuss theoretical issues such as consistency, stability, and convergence. The theoretical order of the method is consistent with the numerical convergence rates. To showcase the method’s effectiveness, we apply it to solve various real-life problems from the literature and compare its performance with existing methods. The proposed method provides better numerical approximations than existing methods and offers high-order accuracy using fewer grid points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data Availability

This article does not involve data sharing since no data sets were analyzed or generated during the present study.

References

  1. Chan, C., Hon, Y.: A constructive solution for a generalized Thomas-Fermi theory of ionized atoms. Quarterly of Applied Mathematics. 45 (3),591–599

  2. Lane, H.J.: On the theoretical temperature of the sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment. Am. J. Sci. 148, 57–74 (1870)

    Article  Google Scholar 

  3. Emden, R.: Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme, B. Teubner (1907)

  4. Hockney, R.W.: A fast direct solution of Poisson’s equation using Fourier analysis. Journal of the Association for Computing Machinery. 12(1), 95–113 (1965)

    Article  MathSciNet  Google Scholar 

  5. Wazwaz, A.-M.: Solving the non-isothermal reaction-diffusion model equations in a spherical catalyst by the variational iteration method. Chem. Phys. Lett. 679, 132–136 (2017)

    Article  Google Scholar 

  6. Reger, K., Van Gorder, R.: Lane-Emden equations of second kind modelling thermal explosion in infinite cylinder and sphere. Appl. Math. Mech. 34(12), 1439–1452 (2013)

    Article  MathSciNet  Google Scholar 

  7. Lin, S.: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J. Theor. Biol. 60(2), 449–457 (1976)

    Article  Google Scholar 

  8. Richardson, O.W.: The emission of electricity from hot bodies. Longmans, Green and Company (1921)

    Google Scholar 

  9. Singh, R., Wazwaz, A.M., Kumar, J.: An efficient semi-numerical technique for solving nonlinear singular boundary value problems arising in various physical models. Int. J. Comput. Math. 93(8), 1330–1346 (2016)

    Article  MathSciNet  Google Scholar 

  10. Singh, R., Kumar, J.: The Adomian decomposition method with Green’s function for solving nonlinear singular boundary value problems.ss Journal of Applied Mathematics and Computing. 44(1–2), 397–416 (2014)

  11. Sahoo, N., Singh, R.: A new efficient semi-numerical method with a convergence control parameter for Lane-Emden-Fowler boundary value problem. Journal of Computational Science. 70, 102041 (2023)

    Article  Google Scholar 

  12. Singh, R., Garg, H., Guleria, V.: Haar wavelet collocation method for Lane-Emden equations with Dirichlet, Neumann and Neumann-Robin boundary conditions. J. Comput. Appl. Math. 346, 150–161 (2019)

    Article  MathSciNet  Google Scholar 

  13. Singh, R., Guleria, V., Singh, M.: Haar wavelet quasilinearization method for numerical solution of Emden-Fowler type equations. Math. Comput. Simul. 174, 123–133 (2020)

    Article  MathSciNet  Google Scholar 

  14. Bhrawy, A.H., Alofi, A.S.: A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 17(1), 62–70 (2012)

    Article  MathSciNet  Google Scholar 

  15. Shahni, J., Singh, R.: An efficient numerical technique for Lane-Emden-Fowler boundary value problems: Bernstein collocation method. The European Physical Journal Plus. 135(6), 1–21 (2020)

    Article  Google Scholar 

  16. Shahni, J., Singh, R.: Numerical solution and error analysis of the Thomas-Fermi type equations with integral boundary conditions by the modified collocation techniques. J. Comput. Appl. Math. 441, 115701 (2024)

    Article  MathSciNet  Google Scholar 

  17. Iyengar, S., Jain, P.: Spline finite difference methods for singular two point boundary value problems. Numer. Math. 50(3), 363–376 (1986)

    Article  MathSciNet  Google Scholar 

  18. Roul, P., Thula, K., Agarwal, R.: Non-optimal fourth-order and optimal sixth-order B-spline collocation methods for Lane-Emden boundary value problems. Appl. Numer. Math. 145, 342–360 (2019)

    Article  MathSciNet  Google Scholar 

  19. Wazwaz, A.M.: The variational iteration method for solving nonlinear singular boundary value problems arising in various physical models. Commun. Nonlinear Sci. Numer. Simul. 16(10), 3881–3886 (2011)

    Article  Google Scholar 

  20. Singh, R., Das, N., Kumar, J.: The optimal modified variational iteration method for the Lane-Emden equations with Neumann and Robin boundary conditions. The European Physical Journal Plus. 132(6), 251 (2017)

    Article  Google Scholar 

  21. Tiwari, D., Verma, A.K., Cattani, C.: Wavelet solution of a strongly nonlinear Lane-Emden equation. J. Math. Chem. 60(10), 2054–2080 (2022)

    Article  MathSciNet  Google Scholar 

  22. Shahni, J., Singh, R.: Numerical results of Emden-Fowler boundary value problems with derivative dependence using the bernstein collocation method. Engineering with Computers 38(Suppl 1), 371–380 (2022)

    Article  Google Scholar 

  23. Elgindy, K.T., Refat, H.M.: High-order shifted Gegenbauer integral pseudo-spectral method for solving differential equations of Lane-Emden type. Appl. Numer. Math. 128, 98–124 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ramos, H., Rufai, M.A.: An adaptive pair of one-step hybrid block Nyström methods for singular initial-value problems of Lane-Emden-Fowler type. Math. Comput. Simul. 193, 497–508 (2022)

    Article  Google Scholar 

  25. Rufai, M.A., Ramos, H.: Solving SIVPs of Lane-Emden-Fowler Type Using a Pair of Optimized Nyström Methods with a Variable Step Size. Mathematics. 11(6), 1535 (2023)

    Article  Google Scholar 

  26. Shahni, J., Singh, R.: Laguerre wavelet method for solving Thomas-Fermi type equations. Engineering with Computers 38(4), 2925–2935 (2022)

    Article  Google Scholar 

  27. Dizicheh, A.K., Salahshour, S., Ahmadian, A., Baleanu, D.: A novel algorithm based on the Legendre wavelets spectral technique for solving the Lane-Emden equations. Appl. Numer. Math. 153, 443–456 (2020)

    Article  MathSciNet  Google Scholar 

  28. Abdelhakem, M., Youssri, Y.: Two spectral Legendre’s derivative algorithms for Lane-Emden, Bratu equations, and singular perturbed problems. Appl. Numer. Math. 169, 243–255 (2021)

    Article  MathSciNet  Google Scholar 

  29. Gümgüm, S.: Taylor wavelet solution of linear and nonlinear Lane-Emden equations. Appl. Numer. Math. 158, 44–53 (2020)

    Article  MathSciNet  Google Scholar 

  30. Singh, R.: Optimal homotopy analysis method for the non-isothermal reaction-diffusion model equations in a spherical catalyst. J. Math. Chem. 56(9), 2579–2590 (2018)

    Article  MathSciNet  Google Scholar 

  31. Singh, R.: Analytic solution of singular Emden-Fowler-type equations by Green’s function and homotopy analysis method. The European Physical Journal Plus. 134(11), 583 (2019)

    Article  Google Scholar 

  32. Singh, R.: A modified homotopy perturbation method for nonlinear singular Lane-Emden equations arising in various physical models. International Journal of Applied and Computational Mathematics. 5(3), 1–15 (2019)

    Article  MathSciNet  Google Scholar 

  33. Rach, R., Duan, J.S., Wazwaz, A.M.: Solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. J. Math. Chem. 52(1), 255–267 (2014)

    Article  MathSciNet  Google Scholar 

  34. Hao, T.C., Cong, F.Z., Shang, Y.-F.: An efficient method for solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions and error estimate. J. Math. Chem. 56(9), 2691–2706 (2018)

    Article  MathSciNet  Google Scholar 

  35. Flockerzi, D., Sundmacher, K.: On coupled Lane-Emden equations arising in dusty fluid models, in: Journal of Physics: Conference Series, Vol. 268, IOP Publishing, p. 012006 (2011)

  36. Muthukumar, S., Veeramuni, M., Lakshmanan, R.: Analytical expression of concentration of substrate and oxygen in excess sludge production using Adomian decomposition method. Indian Journal of Applied Research. 4, 387–391 (2014)

    Article  Google Scholar 

  37. Singh, R., Kumar, J., Nelakanti, G.: Numerical solution of singular boundary value problems using green’s function and improved decomposition method. J. Appl. Math. Comput. 43(1–2), 409–425 (2013)

    Article  MathSciNet  Google Scholar 

  38. Wazwaz, A.-M., Rach, R., Duan, J.-S.: A study on the systems of the Volterra integral forms of the Lane-Emden equations by the Adomian decomposition method. Mathematical Methods in the Applied Sciences. 37(1), 10–19 (2014)

    Article  MathSciNet  Google Scholar 

  39. Singh, R., Singh, G., Singh, M.: Numerical algorithm for solution of the system of Emden-Fowler type equations. International Journal of Applied and Computational Mathematics. 7(4), 136 (2021)

    Article  MathSciNet  Google Scholar 

  40. Duan, J.-S., Rach, R., Wazwaz, A.-M.: Oxygen and carbon substrate concentrations in microbial floc particles by the Adomian decomposition method. MATCH Communications in Mathematical and in Computer Chemistry. 73, 785–796 (2015)

    MathSciNet  Google Scholar 

  41. Wazwaz, A.M., Rach, R., Duan, J.-S.: Variational iteration method for solving oxygen and carbon substrate concentrations in microbial floc particles. MATCH Communications in Mathematical and in Computer Chemistry. 76, 511–523 (2016)

    MathSciNet  Google Scholar 

  42. Singh, R., Wazwaz, A.-M.: An efficient algorithm for solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions: the homotopy analysis method. MATCH Communications in Mathematical and in Computer Chemistry. 81(3), 785–800 (2019)

    MathSciNet  Google Scholar 

  43. Öztürk, Y.: An efficient numerical algorithm for solving system of Lane-Emden type equations arising in engineering. Nonlinear Engineering. 8(1), 429–437 (2019)

    Article  Google Scholar 

  44. Mohammadzadeh, R., Lakestani, M., Dehghan, M.: Collocation method for the numerical solutions of Lane-Emden type equations using cubic Hermite spline functions. Mathematical Methods in the Applied Sciences. 37(9), 1303–1717 (2014)

    Article  MathSciNet  Google Scholar 

  45. He, J.-H., Ji, F.-Y.: Taylor series solution for Lane-Emden equation. J. Math. Chem. 57(8), 1932–1934 (2019)

    Article  MathSciNet  Google Scholar 

  46. Datsko, B., Kutniv, M.: Explicit numerical methods for solving singular initial value problems for systems of second-order nonlinear ODEs. Numerical Algorithms. 1–14 (2024)

  47. Aydinlik, S., Kiris, A.: First order smooth composite chebyshev finite difference method for solving coupled Lane-Emden problem in catalytic diffusion reactions. MATCH Communications in Mathematical and in Computer Chemistry. 87, 463–476 (2022)

    Article  Google Scholar 

  48. Abdelhakem, M., Fawzy, M., El-Kady, M., Moussa, H.: An efficient technique for approximated BVPs via the second derivative Legendre polynomials pseudo-Galerkin method: Certain types of applications. Results in Physics. 43, 106067 (2022)

    Article  Google Scholar 

  49. Gamal, M., El-Kady, M., Abdelhakem, M.: Solving real-life BVPs via the second derivative Chebyshev pseudo-Galerkin method. International Journal of Modern Physics C. 2450089 (2024)

  50. Madduri, H., Roul, P.: A fast-converging iterative scheme for solving a system of Lane-Emden equations arising in catalytic diffusion reactions. J. Math. Chem. 57(2), 570–582 (2019)

    Article  MathSciNet  Google Scholar 

  51. Shah, A., Yuan, L., Khan, A.: Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations. Appl. Math. Comput. 215(9), 3201–3213 (2010)

    MathSciNet  Google Scholar 

  52. Düring, B., Fournié, M., Jüngel, A.: High order compact finite difference schemes for a nonlinear Black-Scholes equation. International Journal of Theoretical and Applied Finance. 6(07), 767–789 (2003)

    Article  MathSciNet  Google Scholar 

  53. Zhao, J., Davison, M., Corless, R.M.: Compact finite difference method for American option pricing. J. Comput. Appl. Math. 206(1), 306–321 (2007)

    Article  MathSciNet  Google Scholar 

  54. Mathale, D., Dlamini, P., Khumalo, M.: Compact finite difference relaxation method for chaotic and hyperchaotic initial value systems. Comput. Appl. Math. 37, 5187–5202 (2018)

    Article  MathSciNet  Google Scholar 

  55. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  56. Roul, P., Goura, V.P., Agarwal, R.: A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions. Appl. Math. Comput. 350, 283–304 (2019)

    MathSciNet  Google Scholar 

  57. Roul, P., Kumari, T.: A novel approach based on mixed exponential compact finite difference and oha methods for solving a class of nonlinear singular boundary value problems. International Journal of Computer Mathematics. 1–19 (2022)

  58. Dlamini, P., Malele, J., Simelane, S.: Solving singular boundary value problems using higher-order compact finite difference schemes with a novel higher-order implementation of Robin boundary conditions. J. Math. Chem. 61(7), 1604–1632 (2023)

    Article  MathSciNet  Google Scholar 

  59. Godunov, S.K., Ryabenkii, V.S.: Difference schemes: an introduction to the underlying theory, Elsevier (1987)

  60. Shahni, J., Singh, R.: Numerical solution of system of emden-fowler type equations by bernstein collocation method. J. Math. Chem. 59(4), 1117–1138 (2021)

    Article  MathSciNet  Google Scholar 

  61. K. Thula, Roul, P.: A high-order b-spline collocation method for solving nonlinear singular boundary value problems arising in engineering and applied science. Mediterranean Journal of Mathematics. 15, 1–24 (2018)

  62. **e, L.-J., Zhou, C.-L., Xu, S.: Solving the systems of equations of Lane-Emden type by differential transform method coupled with Adomian polynomials. Mathematics. 7(4), 377 (2019)

    Article  Google Scholar 

  63. Chawla, M., Subramanian, R., Sathi, H.: A fourth order method for a singular two-point boundary value problem. BIT Numer. Math. 28(1), 88–97 (1988)

    Article  MathSciNet  Google Scholar 

  64. Verma, A.K., Kayenat, S.: On the convergence of Mickens’ type nonstandard finite difference schemes on Lane-Emden type equations. J. Math. Chem. 56(6), 1667–1706 (2018)

    Article  MathSciNet  Google Scholar 

  65. Doha, E., Abd-Elhameed, W., Youssri, Y.: Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane-Emden type. New Astron. 23, 113–117 (2013)

    Article  Google Scholar 

  66. Youssri, Y., Abd-Elhameed, W., Doha, E.: Ultraspherical wavelets method for solving Lane-Emden type equations. Rom. J. Phys. 60(9–10), 1298–1314 (2015)

    Google Scholar 

  67. Youssri, Y.H., Atta, A.G.: Spectral collocation approach via normalized shifted Jacobi polynomials for the nonlinear Lane-Emden equation with fractal-fractional derivative. Fractal and Fractional. 7(2), 133 (2023)

    Article  Google Scholar 

Download references

Funding

Not Applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randhir Singh.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Conflicts of Interest

The authors certify that there are no conflicts of interest to this work.

Ethical Approval

Not Applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, N., Singh, R. & Ramos, H. An innovative fourth-order numerical scheme with error analysis for Lane-Emden-Fowler type systems. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01882-0

Keywords

Navigation