Log in

Novel patterns in the space variable fractional order Gray–Scott model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we apply Fourier spectral method to simulate the process of pattern formations of the space variable fractional order Gray–Scott model. This spatially extended reaction–diffusion model is obtained from the standard Gray–Scott model by using the Riesz variable fractional derivative in space. To validate the high efficiency and low computational complexity of the present numerical method, some numerical examples are provided as well as the numerical results are compared with those obtained by other numerical methods. The effects of order with different forms on pattern formation are discussed including a trigonometric function and a polynomial function. Furthermore, the temporal evolution of patterns in the space variable fractional order three-dimensional Gray–Scott model is given. Some interesting process of pattern formations are observed in numerical study which are different from any that have been previously reported. The Fourier spectral method is applicable for the Gray–Scott model with space variable fractional order, and it will be applied to some other space variable fractional order reaction–diffusion models in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

All data generated or analyzed during this study are included in this paper.

References

  1. Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21(3), 213–236 (1995)

    Article  MathSciNet  Google Scholar 

  2. Lorenzo, C.F., Hartley, T.T.: Intitialization, conceptualization, and application in the generalized fractional calculus. NASA/TP 208, 208415 (1998)

    Google Scholar 

  3. Lorenzo, C.F., Hartley, T.T.: Variable-order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  Google Scholar 

  4. Glockle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J . 68(1), 46–53 (1995)

    Article  Google Scholar 

  5. Klass, Donal L., Electroviscous Fluids, I.: Rheological properties. J. Appl. Phys. 38(1), 67–74 (1967)

    Article  Google Scholar 

  6. Gao, D., Lü, X., Peng, M.S.: Study on the \((2+1)\)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation. Phys. Scr. 98(9), 095225 (2023)

    Article  Google Scholar 

  7. Shiga, T.: Deformation and viscoelastic behavior of polymer gels in electric fields. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 74, 6–11 (1998)

    Article  Google Scholar 

  8. Davis, L.C.: Model of magneto rheological elastomers. J. Appl. Phys. 85(6), 3342–3351 (1999)

    Article  Google Scholar 

  9. Sun, H.G., Li, Z., Zhang, Y., et al.: Fractional and fractal derivative models for transient anomalous diffusion: model comparison. Chaos Solitons Fractals 102, 346–353 (2017)

    Article  MathSciNet  Google Scholar 

  10. Liang, Y.J., Chen, W., Akpa, B.S., et al.: Using spectral and cumulative spectral entropy to classify anomalous diffusion in Sephadex gels. Comput. Math. Appl. 73(5), 765–774 (2017)

    Article  MathSciNet  Google Scholar 

  11. Yin, Y.H., Lü, X.: Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the CQ-NLSE. Commun. Nonlinear Sci. Numer. Simul. 126, 107441 (2023)

    Article  MathSciNet  Google Scholar 

  12. Jhinga, A., Daftardar-Gejji, V.: A new finite difference predictor-corrector method for fractional differential equations. Appl. Math. Comput. 336, 418–432 (2018)

    MathSciNet  Google Scholar 

  13. Dai, D.D., Ban, T.T., Wang, Y.L., et al.: The piecewise reproducing kernel method for the time variable fractional order advection–reaction–diffusion equations. Therm. Sci. 25(2B), 1261–1268 (2021)

    Article  Google Scholar 

  14. Zhang, Y., Cao, J., Bu, W., et al. A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation. International Journal of Modeling Simulation and Scientific Computing, 2020, 11(2)

  15. Heydari, M.H., Hosseininia, M.: A new variable-order fractional derivative with non-singular Mittag–Leffler kernel: application to variable-order fractional version of the 2D Richard equation. Eng. Comput. 38(2), 1759–1770 (2022)

    Article  Google Scholar 

  16. **e, S., Zhou, H., Jia, W., et al.: Modeling approaches to permeability of coal based on a variable-order fractional derivative. Energy Fuels 37(8), 5805–5813 (2023)

    Article  Google Scholar 

  17. Safari, F., **g, L., Lu, J., et al.: A meshless method to solve the variable-order fractional diffusion problems with fourth-order derivative term. Eng. Anal. Bound. Elem. 143, 677–686 (2022)

    Article  MathSciNet  Google Scholar 

  18. Liu, K. W., Lü, X., Gao, F., et al.: Expectation-maximizing network reconstruction and most applicable network types based on binary time series data. Physica D 454, 133834 (2023)

  19. Meerschaert Mark, M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  Google Scholar 

  20. Heydari, M.H., Avazzadeh, Z., Yang, Y.: A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl. Math. Comput. 352(1), 235–248 (2019)

    MathSciNet  Google Scholar 

  21. Tavasani, B.B., Sheikhani, A.H.R., Aminikhah, H.: Numerical scheme to solve a class of variable-order Hilfer–Prabhakar fractional differential equations with Jacobi wavelets polynomials. Appl. Math. A J. Chin. Univ. 37(1), 35–51 (2022)

    Article  MathSciNet  Google Scholar 

  22. Cao, F., Lü, X., Zhou, Y.X., et al.: Modified SEIAR infectious disease model for Omicron variants spread dynamics. Nonlinear Dyn. 111(15), 14597–14620 (2023)

    Article  Google Scholar 

  23. Podlubny, I.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137–3153 (2009)

    Article  MathSciNet  Google Scholar 

  24. Podlubny I. Fractional Differential Equations, Academic Press, (1999)

  25. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, New York (1998)

    Google Scholar 

  26. Podlubny, I.: Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3(4), 359–386 (2000)

    MathSciNet  Google Scholar 

  27. Podlubny, I.: Geometric and physical interpretations of fractional integration and differentiation. Fract. Calc. Appl. Anal. 5(4), 230–237 (2001)

    MathSciNet  Google Scholar 

  28. Chen, Y., Lü, X.: Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev-Petviashvili equation. Physics of Fluids 35, 106613 (2023)

  29. Saichev, A., Zaslavsky, G.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–764 (1997)

    Article  MathSciNet  Google Scholar 

  30. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion equations. J. Comput. Appl. Math. 172(1), 65–77 (2014)

    Article  MathSciNet  Google Scholar 

  31. Del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Front dynamics in reaction–diffusion systems with levy flights: a fractional diffusion approach. Phys. Rev. Lett. 91(1), 018302 (2003)

    Article  Google Scholar 

  32. Wang, J., Wu, X., Xu, H., et al.: An efficient image inpainting algorithm based on a modified Gray–Scott model. Signal Process. 214, 109265 (2024)

    Article  Google Scholar 

  33. Jiang, W., Lu, Z., Wang, J.: Uniform patterns formation based on Gray–Scott model for 3D printing. Comput. Phys. Commun. 295, 108974 (2024)

    Article  Google Scholar 

  34. Wang, X., Shi, J., Zhang, G.: Bifurcation and pattern formation in diffusive Klausmeier–Gray–Scott model of water-plant interaction. J. Math. Anal. Appl. 497(1), 124860 (2021)

    Article  MathSciNet  Google Scholar 

  35. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38(1), 29–43 (1983)

    Article  Google Scholar 

  36. Sel’Kov, E.E.: Self-oscillations in glycolysis. Fed. Eur. Biochem. Soc. J. 4(1), 79–86 (1968)

    Article  Google Scholar 

  37. Doelman, A., Gardner, R.A., Kaper, T.J.: Stability analysis of singular patterns in the 1D Gray–Scott model: a matched asymptotics approach. Physica D 122(1–4), 1–36 (1998)

    Article  MathSciNet  Google Scholar 

  38. Doelman, A., Kaper, T.J., Zegeling, P.A.: Pattern formation in the one-dimensional Gray–Scott model. Nonlinearity 10(2), 523–563 (1997)

    Article  MathSciNet  Google Scholar 

  39. Lee, K.J., Mccormick, W.D., Ouyang, Q., et al.: Pattern formation by interacting chemical fronts. Science 261(5118), 192 (1993)

    Article  Google Scholar 

  40. Pearson, J.E.: Complex patterns in a simple system. Science 261(5118), 189–192 (1993)

    Article  Google Scholar 

  41. Hale, J., Peletier, L., Troy, W.C.: Exact homoclinic and heteroclinic solutions of the Gray–Scott model for autocatalysis. SIAM J. Appl. Math. 61(1), 102–130 (2000)

    Article  MathSciNet  Google Scholar 

  42. Mcgough, J.S., Riley, K.: Pattern formation in the Gray–Scott model. Nonlinear Anal. Real World Appl. 5(1), 105–121 (2004)

    Article  MathSciNet  Google Scholar 

  43. **e, W.X., Cao, S.P., Cai, L., et al.: Study on Turing patterns of Gray–Scott model via amplitude equation. Int. J. Bifurc. Chaos 30(8), 2050121 (2020)

    Article  MathSciNet  Google Scholar 

  44. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 130, 107205 (2024)

    Article  MathSciNet  Google Scholar 

  45. Adamatzky, A.: Generative complexity of Gray–Scott model. Commun. Nonlinear Sci. Numer. Simul. 56, 457–466 (2018)

    Article  MathSciNet  Google Scholar 

  46. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction–diffusion equations. BIT Numer. Math. 54(4), 937–954 (2014)

    Article  MathSciNet  Google Scholar 

  47. Yin, Y.H., Lü, X., Li, S.K., Yang, L.X., Gao, Z.Y.: Graph representation learning in the ITS: car-following informed spatiotemporal network for vehicle trajectory predictions. IEEE Trans. Intel. Veh. (2024). https://doi.org/10.1109/TIV.2024.3381990

    Article  Google Scholar 

  48. Lei, S., Wang, Y., Du, R.: A finite difference scheme for the two-dimensional Gray–Scott equation with fractional Laplacian. Numer. Algorithms 94(3), 1185–1215 (2023)

    Article  MathSciNet  Google Scholar 

  49. Abbaszadeh, M., Dehghan, M., Navon, I.M.: A POD reduced-order model based on spectral Galerkin method for solving the space-fractional Gray–Scott model with error estimate. Eng. Comput. 38(3), 2245–2268 (2022)

    Article  Google Scholar 

  50. Peng, X., Zhao, Y. W., Lü, X.: Data-driven solitons and parameter discovery to the \((2+1)\)-dimensional NLSE in optical fiber communications. Nonlinear Dynamics, (2023): 1-16

  51. Gray, P., Scott, S.K.: Chemical Oscillations and Instabilities. Oxford University Press, Oxford (1990)

    Book  Google Scholar 

  52. Iserles, A.: A first course in the numerical analysis of differential equations. Am. J. Phys. 65(2), 929 (2008)

    Google Scholar 

  53. Xu, Z.Z., Cai, W.J., Jiang, C.L., et al.: Optimal error estimate of a conservative Fourier pseudo-spectral method for the space fractional nonlinear Schrödinger equation. Numer. Meth. Part. D. E. 37(2), 1591–1611 (2021)

    Article  Google Scholar 

  54. Wang, J.J., **ao, A.G.: Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations. Appl. Math. Comput. 350, 348–365 (2019)

    MathSciNet  Google Scholar 

  55. Han, C., Wang, Y.L., Li, Z.Y.: A high-precision numerical approach to solving space fractional Gray–Scott model. Appl. Math. Lett. 125, 107759 (2022)

    Article  MathSciNet  Google Scholar 

  56. Han, C., Wang, Y.L., Li, Z.Y.: Numerical solutions of space fractional variable-coefficient KdV-modified KdV equation by Fourier spectral method. Fractals 29(8), 2150246 (2021)

    Article  Google Scholar 

  57. Wang, Y., Lü, X.: Bäcklund transformation and interaction solutions of a generalized Kadomtsev–Petviashvili equation with variable coefficients. Chin. J. Phys. 89, 37–45 (2024)

    Article  Google Scholar 

  58. Frigo, M., Johnson, S.G.: FFTW: an adaptive software architecture for the FFT. In: International Conference on Acoustics, Speech & Signal Processing, vol. 3, pp. 1381–1384 (1998)

  59. Flores, S., Macias-Diaz, J.E., Hendy, A.S.: Discrete monotone method for space-fractional nonlinear reaction-diffusion equations. Adv. Differ. Equ. 317 (2019)

  60. Yin, Y.H., Lü, X., Jiang, R., et al.: Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS. Physica A 635, 129494 (2024)

  61. Zhang, H.M., Liu, F.: Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term. J. Appl. Math. Inf. 26(1–2), 1–14 (2008)

  62. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., et al.: A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Physica A 491, 406–424 (2018)

    Article  MathSciNet  Google Scholar 

  63. Chen, S.Q., Lü, X.: Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demand model. Transportmetrica B 12, 2336029 (2024)

    Google Scholar 

Download references

Funding

The authors thank the reviewers and editors for their valuable suggestions, which greatly improved the quality of the paper. This work is supported by the Fundamental Research Funds for the Central Universities (2024JBZX003), by the National Natural Science Foundation of China under Grant No. 12275017, by the State Key Laboratory of Integrated Services Networks (Contract No. ISN25-16), **dian University and by the Bei**g Laboratory of National Economic Security Early-warning Engineering, Bei**g Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ng Lü.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Lü, X. Novel patterns in the space variable fractional order Gray–Scott model. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09857-5

Keywords

Navigation