Log in

Predefined-time control for single-master-multiple-slave teleoperation systems with prescribed performance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the predefined-time control problem with prescribed performance is investigated for bilateral teleoperation systems with a single master and multiple slaves. The difficulty lies in the realization of predefined time stability and synchronization control of single-master and multi-slave manipulators. A prescribed performance function is introduced and an improved error conversion mechanism for matrix transformation is designed to ensure that joint displacement tracking error is constrained. A novel coordination position error transformation is defined such that the positional synchronization of the single-master-multiple-slave manipulators is achieved. Based on graph theory and Lyapunov stability theorem, a novel adaptive neural control approach is developed with predefined time interval via the backstep** technique, such that the convergence time can be predefined by users specification, the tracking error can be limited within a prescribed bound and in the meantime can converge to zero within predefined time interval. Simulation results are provided to prove the effectiveness of the presented scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Zhai, D., **a, Y.: Adaptive control of semi-autonomous teleoperation system with asymmetric time-varying delays and input uncertainties. IEEE Trans. Cybern. 47(11), 3621–3633 (2017)

    Google Scholar 

  2. Chen, Z., Huang, F., Sun, W., Gu, J., Yao, B.: RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay. IEEE/ASME Trans. Mechatron. 25(2), 906–918 (2020)

    Google Scholar 

  3. Li, Y., Wang, L., Liu, K., He, W., Yin, Y., Johansson, R.: Distributed neural-network-based cooperation control for teleoperation of multiple mobile manipulators under round-robin protocol. IEEE Trans. Neural Netw. Learn. Syst. 34(8), 4841–4855 (2023)

    MathSciNet  Google Scholar 

  4. Kebria, P.M., Khosravi, A., Nahavandi, S., Shi, P., Alizadehsani, R.: Robust adaptive control scheme for teleoperation systems with delay and uncertainties. IEEE Trans. Cybern. 50(7), 3243–3253 (2020)

    Google Scholar 

  5. Rakkiyappan, R., Baranitha, R., Zeng, Z.: Hidden markov-model-based control design for multilateral teleoperation system with asymmetric time-varying delays. IEEE Trans. Syst. Man Cybern. Syst. 52(3), 1958–1969 (2022)

    Google Scholar 

  6. Chen, Z., Huang, F., Yang, C., Yao, B.: Adaptive fuzzy backstep** control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance. IEEE Trans. Ind. Electron. 67(1), 746–756 (2020)

    Google Scholar 

  7. Wang, H., Liu, P.X., Liu, S.: Adaptive neural synchronization control for bilateral teleoperation systems with time delay and backlash-like hysteresis. IEEE Trans. Cybern. 47(10), 3018–3026 (2017)

    Google Scholar 

  8. Zhao, Z., Yang, J., Li, S., Chen, W.: Composite nonlinear bilateral control for teleoperation systems with external disturbances. IEEE/CAA J. Autom. Sin. 6(5), 1220–1229 (2019)

    MathSciNet  Google Scholar 

  9. Xu, Y., Wu, Z.-G., Pan, Y.-J.: Synchronization of coupled harmonic oscillators with asynchronous intermittent communication. IEEE Trans. Cybern. 51(1), 258–266 (2021)

    Google Scholar 

  10. Kuang, Z., Gao, H., Tomizuka, M.: Precise linear-motor synchronization control via cross-coupled second-order discrete-time fractional-order sliding mode. IEEE/ASME Trans. Mechatron. 26(1), 358–368 (2020)

    Google Scholar 

  11. Sun, D., Shao, X., Feng, G.: A model-free cross-coupled control for position synchronization of multi-axis motions: Theory and experiments. IEEE Trans. Control Syst. Technol. 15(2), 306–314 (2007)

    Google Scholar 

  12. Chawda, V., O’Malley, M.K.: Position synchronization in bilateral teleoperation under time-varying communication delays. IEEE/ASME Trans. Mechatron. 20(1), 245–253 (2015)

    Google Scholar 

  13. Yang, Y., Hua, C., Li, J.: Composite adaptive guaranteed performances synchronization control for bilateral teleoperation system with asymmetrical time-varying delays. IEEE Trans. Cybern. 52(6), 5486–5497 (2022)

    Google Scholar 

  14. Bao, J., Wang, H., Liu, P.X.: Finite-time synchronization control for bilateral teleoperation systems with asymmetric time-varying delay and input dead zone. IEEE/ASME Trans. Mechatron. 26(3), 1570–1580 (2021)

    Google Scholar 

  15. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    MathSciNet  Google Scholar 

  16. Sui, S., Chen, C.L.P., Tong, S.: A novel adaptive NN prescribed performance control for stochastic nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 3196–3205 (2021)

    MathSciNet  Google Scholar 

  17. Qiu, J., Sun, K., Rudas, I.J., Gao, H.: Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Trans. Cybern. 50(7), 2905–2915 (2020)

    Google Scholar 

  18. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    MathSciNet  Google Scholar 

  19. Liu, G., Park, J.H., Xu, H., Hua, C.: Reduced-order observer-based output-feedback tracking control for nonlinear time-delay systems with global prescribed performance. IEEE Trans. Cybern. 53(9), 5560–5571 (2023)

    Google Scholar 

  20. Zhang, L., Yang, G.-H.: Adaptive fuzzy prescribed performance control of nonlinear systems with hysteretic actuator nonlinearity and faults. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2349–2358 (2018)

    Google Scholar 

  21. Sun, W., Su, S.-F., **a, J., Zhuang, G.: Command filter-based adaptive prescribed performance tracking control for stochastic uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 51(10), 6555–6563 (2021)

    Google Scholar 

  22. Ma, H., Zhou, Q., Li, H., Lu, R.: Adaptive prescribed performance control of a flexible-joint robotic manipulator with dynamic uncertainties. IEEE Trans. Cybern. 52(12), 12905–12915 (2022)

    Google Scholar 

  23. Wang, Z., Liang, B., Sun, Y., Zhang, T.: Adaptive fault-tolerant prescribed-time control for teleoperation systems with position error constraints. IEEE Trans. Ind. Inf. 16(7), 4889–4899 (2020)

    Google Scholar 

  24. Guo, S., Liu, Z., Yu, J., Huang, P., Ma, Z.: Adaptive practical fixed-time synchronization control for bilateral teleoperation system with prescribed performance. IEEE Trans. Circuits Syst. II Express Briefs 69(3), 1243–1247 (2022)

    Google Scholar 

  25. Li, L., Liu, Z., Guo, S., Ma, Z., Huang, P.: Adaptive practical predefined-time control for uncertain teleoperation systems with input saturation and output error constraints. IEEE Trans. Ind. Electron. 71(2), 1842–1852 (2024)

    Google Scholar 

  26. Qin, H., Yang, H., Sun, Y., Feng, L.: Fixed-time stable bilateral teleoperation of underwater manipulator using prescribed performance terminal sliding surfaces. J. Franklin Inst. 360(4), 3280–3306 (2023)

    MathSciNet  Google Scholar 

  27. Yang, Y., Hua, C., Guan, X.: Finite time control design for bilateral teleoperation system with position synchronization error constrained. IEEE Trans. Cybern. 46(3), 609–619 (2016)

    Google Scholar 

  28. Xu, K., Wang, H., Liu, P.X.: Adaptive fuzzy finite-time tracking control of nonlinear systems with unmodeled dynamics. Appl. Math. Comput. 450, 127992 (2023)

    MathSciNet  Google Scholar 

  29. Zhang, B., Jia, Y., Du, J., Zhang, J.: Finite-Time synchronous control for multiple manipulators with sensor saturations and a constant reference. IEEE Trans. Control Syst. Technol. 22(3), 1159–1165 (2014)

    Google Scholar 

  30. Zhang, H., Song, A., Li, H., Shen, S.: Novel adaptive finite-time control of teleoperation system with time-varying delays and input saturation. IEEE Trans. Cybern. 51(7), 3724–3737 (2021)

    Google Scholar 

  31. Wang, H., Xu, K., Zhang, H.: Adaptive finite-time tracking control of nonlinear systems with dynamics uncertainties. IEEE Trans. Autom. Control 68(9), 5737–5744 (2023)

    MathSciNet  Google Scholar 

  32. Zong, G., Ren, H., Karimi, H.R.: Event-triggered communication and annular finite-time \(H_\infty \) filtering for networked switched systems. IEEE Trans. Cybern. 51(1), 309–317 (2021)

    Google Scholar 

  33. Xu, K., Wang, H., Liu, P.X.: Adaptive fixed-time control for high-order stochastic nonlinear time-delay systems: an improved Lyapunov-Krasovskii function. IEEE Trans. Cybern. 54(2), 776–786 (2024)

    Google Scholar 

  34. Zhang, S., Yuan, S., Yu, X., Kong, L., Li, Q., Li, G.: Adaptive neural network fixed-time control design for bilateral teleoperation with time delay. IEEE Trans. Cybern. 52(9), 9756–9769 (2022)

    Google Scholar 

  35. Xu, K., Wang, H., Liu, P.X.: Singularity-free adaptive fixed-time tracking control for MIMO nonlinear systems with dynamic uncertainties. IEEE Trans. Circuits Syst. II-Express Briefs. 71(3), 1356–1360 (2024)

    Google Scholar 

  36. Ni, J., Shi, P., Zhao, Y., Pan, Q., Wang, S.: Fixed-time event-triggered output consensus tracking of high-order multiagent systems under directed interaction graphs. IEEE Trans. Cybern. 52(7), 6391–6405 (2022)

    Google Scholar 

  37. Sánchez-Torres, J.D., Gómez-Gutiérrez, D., López, E., Loukianov, A.G.: A class of predefined-time stable dynamical systems. IMA J. Math. Control Inf. 35(Suppl 1), i1–i29 (2018)

    MathSciNet  Google Scholar 

  38. Ni, J., Shi, P.: Global predefined time and accuracy adaptive neural network control for uncertain strict-feedback systems with output constraint and dead zone. IEEE Trans. Syst. Man Cybern. Syst. 51(12), 7903–7918 (2021)

    Google Scholar 

  39. Ferrara, A., Incremona, G.P.: Predefined-time output stabilization with second order sliding mode generation. IEEE Trans. Autom. Control 66(3), 1445–1451 (2021)

    MathSciNet  Google Scholar 

  40. Wang, F., Liu, Z., Zhang, Y., Chen, B.: Distributed adaptive coordination control for uncertain nonlinear multi-agent systems with dead-zone input. J. Franklin Inst. 353(10), 2270–2289 (2016)

    MathSciNet  Google Scholar 

  41. Jiménez-Rodríguez, E., Sánchez-Torres, J.D., Loukianov, A.G.: Predefined-time backstep** control for tracking a class of mechanical systems. IFAC-PapersOnLine 50(1), 1680–1685 (2018)

    Google Scholar 

  42. Wang, H., Liu, K., Liu, X., Chen, B., Lin, C.: Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Cybern. 45(9), 1977–1987 (2017)

  43. Nguyen, K., Dang, V.T., Pham, D.D., Dao, P.N.: Formation control scheme with reinforcement learning strategy for a group of multiple surface vehicles. Int. J. Robust Nonlinear Control 34(3), 2252–2279 (2024)

Download references

Funding

This work was supported in part by the Fundamental Research Funds for the Central Universities Grant 2023YJS002, in part by Zhejiang Natural Science Foundation LZ23F030010, and in part by the National Natural Science Foundation of China under Grant 62173046.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Xu, Huanqing Wang or Peter ** Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Wang, H. & Liu, P.X. Predefined-time control for single-master-multiple-slave teleoperation systems with prescribed performance. Nonlinear Dyn 112, 13233–13247 (2024). https://doi.org/10.1007/s11071-024-09717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09717-2

Keywords

Navigation