Log in

A memristor crossbar based on a novel ternary memristor model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a high-density programmable logic array based on a ternary memristor crossbar array is designed. Based on the three-valued state characteristics of the ternary memristor, we implement the ternary OR logic gate and a standard ternary inverter to demonstrate the application of this proposed crossbar by using reconfigurable and programmable connections of the memristor cells in the array. Subsequently, on the basis of these logic gates, ternary NAND gates, NOR gates, XOR gates and XNOR gates are further realized. The above-mentioned logic gates all use memristance as the logic state variable. Finally, we verified the functionality of the programmable gate array based on the proposed ternary memristor crossbar through SPICE simulation and gave the power consumption of each circuit under different input conditions. Compared with existing ternary memristor cross array circuits, our circuit has the advantages of low power consumption and high integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kuhn, K.J.: Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59(7), 1813–1828 (2012)

    Article  Google Scholar 

  2. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  3. Strukov, D.B., Snider, G.S., Steward, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  4. Vourkas, I., Sirakoulis, G.C.: Emerging memristor-based logic circuit design approaches: a review. IEEE Circuits Syst. Mag. 16(3), 15–30 (2016)

    Article  Google Scholar 

  5. Min, X.T., Wang, X.Y., Zhou, P.F., Yu, S.M., Iu, H.H.C.: An optimized memristor-based hyperchaotic system with controlled hidden attractors. IEEE Access. 7, 124641–124646 (2019)

    Article  Google Scholar 

  6. Guo, M., Liu, R.Y., Dou, M.L., Dou, G.: SBT-memristor-based crossbar memory circuit. Chin. Phys. B 30(6), 068402 (2021)

    Article  Google Scholar 

  7. Li, C., Wang, Z.R., Rao, M.Y., Belkin, D., Song, W.H., Jiang, H., Yan, P., Li, Y.N., Lin, P., Hu, M., Ge, N., Strachan, J.P., Barnell, M., Wu, Q., Williams, R.S., Yang, J.J., **a, Q.F.: Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1(1), 49–57 (2019)

    Article  Google Scholar 

  8. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristive switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)

    Article  Google Scholar 

  9. Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U.C., Friedman, E.G.: MRL—memristor ratioed logic. In: 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications, pp. 1–6 (2012)

  10. Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: MAGIC-memristor-aided logic. IEEE Trans. Circuits Syst. II Express Briefs 61(11), 895–899 (2014)

    Google Scholar 

  11. Wu, Z., Zhang, Y., Du, S., Guo, Z., Zhao, W.: A three-valued adder circuit implemented in ZnO memristor with multi-resistance states. In: 2021 IEEE 14th International Conference on ASIC (ASICON) pp. 1–3 (2021)

  12. Chen, Qilai, Liu, Gang, Tang, Minghua, Chen, **nhui, Zhang, Yuejun, Zhang, Xuejun, Li, Runwei: A univariate ternary logic and three-valued multiplier implemented in a nano-columnar crystalline zinc oxide memristor. RSC Adv. 9(42), 24595–24602 (2019)

    Article  Google Scholar 

  13. Gaudet, V.: A survey and tutorial on contemporary aspects of multiple-valued logic and its application to microelectronic circuits. IEEE J. Emerg. Sel. Top. Circuits Syst. 6(1), 5–12 (2016)

    Article  Google Scholar 

  14. Kim, S., Lee, S.Y., Park, S., Kim, K.R., Kang, S.: A logic synthesis methodology for low-power ternary logic circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 67(9), 3138–3151 (2020)

    Article  Google Scholar 

  15. Miller, D.M., Thornton, M.A.: Multiple-valued logic: concepts and representations. Synth. Lect. Digit. Circuits Syst. 2(1), 1–27 (2007)

    Article  Google Scholar 

  16. Hurst.: Multiple-valued logic—its status and its future. IEEE Trans. Comput. 33(12), 1160–1179 (1984)

  17. Wang, X.Y., Zhou, P.F., Eshraghian, J.K., Lin, C.Y., Iu, H.H.C., Chang, T.C., Kang, S.M.: High-density memristor-CMOS ternary logic family. IEEE Trans. Circuits Syst. I. Regul. Pap. 68(1), 264–274 (2021)

    Article  Google Scholar 

  18. Zhang, H.F., Zhang, Z.W., Gao, M.Y., Luo, L., Duan, S.K., Dong, Z.K., Lin, H.P.: Implementation of unbalanced ternary logic gates with the combination of spintronic memristor and CMOS. Electronics 9(4), 542 (2020)

  19. Soliman, N.S., Fouda, M.E., Radwan, A.G.: Memristor-CNTFET based ternary logic gates. Microelectron. J. 72, 74–85 (2017)

    Article  Google Scholar 

  20. Luo, L., Dong, Z.K., Hu, X.F., Wang, L.D., Duan, S.K.: MTL: Memristor ternary logic design. Int. J. Bifurc. Chaos 30(15), 2050222 (2020)

    Article  MathSciNet  Google Scholar 

  21. Garda, B., Ogorzalek, M., Kasiliski, K., Galias, Z.: Studies of dynamics of memristor-based memory cells. In: 2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS), Bariloche, Argentina, pp. 1–4 (2017)

  22. Gharpinde, R., Thangkhiew, P.L., Datta, K., Sengupta, I.: A scalable in-memory logic synthesis approach using memristor crossbar. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(2), 355–366 (2018)

    Article  Google Scholar 

  23. Kim, K.M., Williams, R.S.: A family of stateful memristor gates for complete cascading logic. IEEE Trans. Circuits Syst. I Regul. Pap. 66(11), 4348–4355 (2019)

    Article  MathSciNet  Google Scholar 

  24. Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time. In: The 2013 International Joint Conference on Neural Networks (IJCNN). 2013, Dallas, USA, pp. 1–7 (2013)

  25. Wang, X.Y., Li, P., **, C.X., Dong, Z.K., Iu, H.H.C.: General modeling method of threshold-type multi-valued memristor and its application in digital logic circuit. Int. J. Bifurc. Chaos 31(16), 2150248 (2021)

    Article  Google Scholar 

  26. Zhong, Y.H., Wu, J.G., Liu, P., Yao, L.: Design of ternary logic gates and adder based on memristor. Microelectron. Comput. 38(7), 60–66 (2021)

    Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant 61871429, in part by the Natural Science Foundation of Zhe-jiang Province under Grant LY18F010012. Jason K. Eshraghian acknowledges the support of the Forrest Research Fellowship awarded by the Forrest Research Foundation, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoyuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, J., Dong, C. et al. A memristor crossbar based on a novel ternary memristor model. Nonlinear Dyn 112, 7583–7596 (2024). https://doi.org/10.1007/s11071-023-09159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09159-2

Keywords

Navigation