Log in

Nonlinear trajectory tracking control of underactuated AUVs using the state-dependent Riccati equation (SDRE) with parameter perturbation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with a novel direct state-dependent Riccati equation (SDRE) controller designed for trajectory tracking of underactuated autonomous underwater vehicles (AUVs) in the presence of parameter perturbation. Despite the traditional SDRE regulator control, the proposed closed-loop SDRE controller design chiefly consists of two parts. First, by selecting a virtual reference point in front of the AUV system as the tracking output, the error variable control model in the earth-fixed reference frame is described. Second, the position errors are driven to the origin by introducing an integral model of first-order fed by the tracking error. The main advantage of the proposed control scheme is that the controller has a unified structure. Moreover, the algorithm is able to provide robustness with parameter perturbation because of its intrinsic robustness capability. Within the SDRE framework, the asymptotic stability of the closed-loop tracking system is also guaranteed. The robustness and effectiveness of the proposed methodology are verified by performing simulation experiments on an underactuated AUV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Chutia, S., Kakoty, N.M., Deka, D.: A review of underwater robotics, navigation, sensing techniques and applications. In: Proceedings of the Advances in Robotics. AIR ’17, pp. 1–6. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3132446.3134872

  2. Zereik, E., Bibuli, M., Mišković, N., Ridao, P., Pascoal, A.: Challenges and future trends in marine robotics. Annu. Rev. Control. 46, 350–368 (2018). https://doi.org/10.1016/j.arcontrol.2018.10.002

    Article  Google Scholar 

  3. Sahoo, A., Dwivedy, S.K., Robi, P.S.: Advancements in the field of autonomous underwater vehicle. Ocean Eng. 181, 145–160 (2019). https://doi.org/10.1016/j.oceaneng.2019.04.011

    Article  Google Scholar 

  4. Kambali, P.N., Nataraj, C.: Nonlinear dynamics of yaw motion of surface vehicles. Nonlinear Dyn. 111(6), 5047–5062 (2023). https://doi.org/10.1007/s11071-022-08089-9

    Article  Google Scholar 

  5. **ang, X., Lapierre, L., Jouvencel, B.: Smooth transition of AUV motion control: from fully-actuated to under-actuated configuration. Robot. Auton. Syst. 67, 14–22 (2015). https://doi.org/10.1016/j.robot.2014.09.024

    Article  Google Scholar 

  6. Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn. 84(2), 1079–1091 (2016). https://doi.org/10.1007/s11071-015-2551-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou, J., Ye, D., Zhao, J., He, D.: Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation. Int. J. Nav. Architect. Ocean Eng. 10(3), 282–293 (2018). https://doi.org/10.1016/j.ijnaoe.2017.08.006

    Article  Google Scholar 

  8. Xu, J., Wang, M., Qiao, L.: Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Eng. 105, 54–63 (2015). https://doi.org/10.1016/j.oceaneng.2015.06.022

    Article  Google Scholar 

  9. Kang, S., Liu, P.X., Wang, H.: Fixed-time adaptive fuzzy command filtering control for a class of uncertain nonlinear systems with input saturation and dead zone. Nonlinear Dyn. 110(3), 2401–2414 (2022). https://doi.org/10.1007/s11071-022-07731-w

    Article  Google Scholar 

  10. von Ellenrieder, K.D.: Dynamic surface control of trajectory tracking marine vehicles with actuator magnitude and rate limits. Automatica 105, 433–442 (2019). https://doi.org/10.1016/j.automatica.2019.04.018

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, C.-C., Lin, T.-Y., Li, Y.-K.: Design of adaptive sliding mode controllers for perturbed nonlinear systems with partial unmeasurable states and state constraints. Nonlinear Dyn. 110(2), 1487–1499 (2022). https://doi.org/10.1007/s11071-022-07686-y

    Article  Google Scholar 

  12. Sun, Y., Kuang, J., Gao, Y., Chen, W., Wang, J., Liu, J., Wu, L.: Fixed-time prescribed performance tracking control for manipulators against input saturation. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08499-3

    Article  Google Scholar 

  13. Karkoub, M., Wu, H.-M., Hwang, C.-L.: Nonlinear trajectory-tracking control of an autonomous underwater vehicle. Ocean Eng. 145, 188–198 (2017). https://doi.org/10.1016/j.oceaneng.2017.08.025

    Article  Google Scholar 

  14. Qiao, L., Yi, B., Wu, D., Zhang, W.: Design of three exponentially convergent robust controllers for the trajectory tracking of autonomous underwater vehicles. Ocean Eng. 134, 157–172 (2017). https://doi.org/10.1016/j.oceaneng.2017.02.006

    Article  Google Scholar 

  15. Kim, M., Joe, H., Kim, J., Yu, S.-C.: Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances. Int. J. Control 88(10), 2055–2065 (2015). https://doi.org/10.1080/00207179.2015.1031182

    Article  MathSciNet  MATH  Google Scholar 

  16. Joe, H., Kim, M., Yu, S.-c: Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn. 78(1), 183–196 (2014). https://doi.org/10.1007/s11071-014-1431-0

    Article  Google Scholar 

  17. Qiao, L., Zhang, W.: Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles. IEEE J. Ocean. Eng. 44(2), 363–385 (2019). https://doi.org/10.1109/JOE.2018.2809018

    Article  Google Scholar 

  18. Guerrero, J., Torres, J., Creuze, V., Chemori, A.: Trajectory tracking for autonomous underwater vehicle: an adaptive approach. Ocean Eng. 172, 511–522 (2019). https://doi.org/10.1016/j.oceaneng.2018.12.027

    Article  Google Scholar 

  19. Manzanilla, A., Ibarra, E., Salazar, S., Zamora, Á.E., Lozano, R., Muñoz, F.: Super-twisting integral sliding mode control for trajectory tracking of an Unmanned Underwater Vehicle. Ocean Eng. 234, 109164 (2021). https://doi.org/10.1016/j.oceaneng.2021.109164

    Article  Google Scholar 

  20. Liu, S., Liu, Y., Wang, N.: Nonlinear disturbance observer-based backstep** finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances. Nonlinear Dyn. 88(1), 465–476 (2017). https://doi.org/10.1007/s11071-016-3253-8

    Article  MATH  Google Scholar 

  21. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016). https://doi.org/10.1109/TCST.2015.2510587

    Article  Google Scholar 

  22. Chen, Y., Zhang, R., Zhao, X., Gao, J.: Adaptive fuzzy inverse trajectory tracking control of underactuated underwater vehicle with uncertainties. Ocean Eng. 121, 123–133 (2016). https://doi.org/10.1016/j.oceaneng.2016.05.034

    Article  Google Scholar 

  23. Cui, R., Yang, C., Li, Y., Sharma, S.: Adaptive Neural Network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 47(6), 1019–1029 (2017). https://doi.org/10.1109/TSMC.2016.2645699

    Article  Google Scholar 

  24. Zhang, G., Li, J., Liu, C., Zhang, W.: A robust fuzzy speed regulator for unmanned sailboat robot via the composite ILOS guidance. Nonlinear Dyn. 110(3), 2465–2480 (2022). https://doi.org/10.1007/s11071-022-07763-2

    Article  Google Scholar 

  25. Yan, Z., Wang, M., Xu, J.: Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics. Ocean Eng. 173, 802–809 (2019). https://doi.org/10.1016/j.oceaneng.2019.01.008

    Article  Google Scholar 

  26. Kumar, N., Rani, M.: An efficient hybrid approach for trajectory tracking control of autonomous underwater vehicles. Appl. Ocean Res. 95, 102053 (2020). https://doi.org/10.1016/j.apor.2020.102053

    Article  Google Scholar 

  27. Ye, L., Zong, Q.: Tracking control of an underactuated ship by modified dynamic inversion. ISA Trans. 83, 100–106 (2018). https://doi.org/10.1016/j.isatra.2018.09.007

    Article  Google Scholar 

  28. Liu, S., Liu, Y., Liang, X., Wang, N.: Uncertainty observation-based adaptive succinct fuzzy-neuro dynamic surface control for trajectory tracking of fully actuated underwater vehicle system with input saturation. Nonlinear Dyn. 98(3), 1683–1699 (2019). https://doi.org/10.1007/s11071-019-05279-w

    Article  MATH  Google Scholar 

  29. Yang, C., Wu, Z.: Adaptive robust maneuvering control for nonlinear systems via dynamic surface technique. Nonlinear Dyn. 111(9), 8369–8381 (2023). https://doi.org/10.1007/s11071-023-08289-x

    Article  MATH  Google Scholar 

  30. Hosseinnajad, A., Loueipour, M.: Velocity-based tuning of degree of homogeneity for finite-time stabilization and fault tolerant control of an ROV in the presence of thruster saturation and rate limits. Nonlinear Dyn. 111(9), 8253–8274 (2023). https://doi.org/10.1007/s11071-022-08222-8

    Article  Google Scholar 

  31. Gan, W., Zhu, D., Ji, D.: QPSO-model predictive control-based approach to dynamic trajectory tracking control for unmanned underwater vehicles. Ocean Eng. 158, 208–220 (2018). https://doi.org/10.1016/j.oceaneng.2018.03.078

    Article  Google Scholar 

  32. Zhang, Y., Liu, X., Luo, M., Yang, C.: MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with constraints in complex ocean environments. Ocean Eng. 189, 106309 (2019). https://doi.org/10.1016/j.oceaneng.2019.106309

    Article  Google Scholar 

  33. Yan, Z., Gong, P., Zhang, W., Wu, W.: Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances. Ocean Eng. 217, 107884 (2020). https://doi.org/10.1016/j.oceaneng.2020.107884

    Article  Google Scholar 

  34. Nekoo, S.R.: Tutorial and review on the state-dependent Riccati equation. J. Appl. Nonlinear Dyn. 8(2), 109–166 (2019). https://doi.org/10.5890/JAND.2019.06.001

    Article  MathSciNet  MATH  Google Scholar 

  35. Naik, M.S., Singh, S.N.: State-dependent Riccati equation-based robust dive plane control of AUV with control constraints. Ocean Eng. 34(11–12), 1711–1723 (2007). https://doi.org/10.1016/j.oceaneng.2006.10.014

    Article  Google Scholar 

  36. Geranmehr, B., Nekoo, S.R.: The nonlinear suboptimal diving control of an autonomous underwater vehicle. In: 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 001–006 (2014). https://doi.org/10.1109/ICRoM.2014.6990767

  37. Geranmehr, B., Nekoo, S.R.: The state-dependent set-point regulation and tracking control of horizontal motion of AUV. In: 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 007–012 (2014). https://doi.org/10.1109/ICRoM.2014.6990768

  38. Geranmehr, B., Nekoo, S.R.: Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the state-dependent Riccati equation. Ocean Eng. 96, 248–257 (2015). https://doi.org/10.1016/j.oceaneng.2014.12.032

    Article  Google Scholar 

  39. Çimen, T.: Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method. Annu. Rev. Control. 34(1), 32–51 (2010). https://doi.org/10.1016/j.arcontrol.2010.03.001

    Article  Google Scholar 

  40. Çimen, T.: Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. J. Guid. Control. Dyn. 35(4), 1025–1047 (2012). https://doi.org/10.2514/1.55821

    Article  Google Scholar 

  41. Yan, Z., Yu, H., Zhang, W., Li, B., Zhou, J.: Globally finite-time stable tracking control of underactuated UUVs. Ocean Eng. 107, 132–146 (2015). https://doi.org/10.1016/j.oceaneng.2015.07.039

    Article  Google Scholar 

  42. Consolini, L., Tosques, M.: A minimum phase output in the exact tracking problem for the nonminimum phase underactuated surface ship. IEEE Trans. Autom. Control 57(12), 3174–3180 (2012). https://doi.org/10.1109/TAC.2012.2199178

    Article  MathSciNet  MATH  Google Scholar 

  43. Shojaei, K., Arefi, M.M.: On the neuro-adaptive feedback linearising control of underactuated autonomous underwater vehicles in three-dimensional space. IET Control Theory Appl. 9(8), 1264–1273 (2015). https://doi.org/10.1049/iet-cta.2014.0472

    Article  MathSciNet  Google Scholar 

  44. Çimen, T.: Approximate nonlinear optimal SDRE tracking control. IFAC Proc. Vol. 40(7), 147–152 (2007). https://doi.org/10.3182/20070625-5-FR-2916.00026

    Article  Google Scholar 

  45. Çimen, T.: Development and validation of a mathematical model for control of constrained non-linear oil tanker motion. Math. Comput. Model. Dyn. Syst. 15(1), 17–49 (2009). https://doi.org/10.1080/13873950802080153

    Article  MathSciNet  MATH  Google Scholar 

  46. Batmani, Y., Davoodi, M., Meskin, N.: Nonlinear suboptimal tracking controller design using state-dependent Riccati equation technique. IEEE Trans. Control Syst. Technol. 25(5), 1833–1839 (2017). https://doi.org/10.1109/TCST.2016.2617285

    Article  Google Scholar 

Download references

Funding

This work was supported by the Education and Scientific Research Project of Fujian Provincial Department of Finance [Grant Numbers GY-Z22010, GY-Z22011], the Marine economic development project of Fujian Province [Grant Number FUHJF-L-2022-16], and the Key scientific and technological innovation projects of Fujian Province [Grant Number 2022G02008].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, methodology, investigation and visualization were performed by [BL] and [XG]. Project administration and funding acquisition were performed by [HH]. Software and validation were performed by [HY]. The first draft of the manuscript was written by [BL], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to **u**g Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Gao, X., Huang, H. et al. Nonlinear trajectory tracking control of underactuated AUVs using the state-dependent Riccati equation (SDRE) with parameter perturbation. Nonlinear Dyn 111, 18027–18041 (2023). https://doi.org/10.1007/s11071-023-08778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08778-z

Keywords

Navigation