Log in

Stochastic relaxation of nonlinear soil moisture ocean salinity (SMOS) soil moisture retrieval errors with maximal Lyapunov exponent optimization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stochastic systems have received substantial attention in many disciplines ranging from various ensemble systems such as ensemble prediction system, or ensemble Kalman filter to stochastic retrievals reducing systematic errors in satellite-retrieved cloud, rainfall, or soil moisture data. However, there were few fundamental explanations of why and how the stochastic approach reduces systematic errors. We discuss how to non-locally optimize stochastic retrievals and to alleviate nonlinear error propagations of the deterministic Soil moisture ocean salinity (SMOS) soil moisture retrievals. By near-zero maximal Lyapunov exponents and rank probability skill score, the retrieval ensembles are optimized for bias correction in a computationally effective way. It is found that the diverse ensembles achieve better representativeness and structural stability than the ensembles from the majority. This stochastic property is important for effective bias correction. It is suggested that this stochastic approach independently resolves SMOS dry biases without relying on a local standard of root mean square errors from the field measurements or a relative comparison with reference data. Due to flexibility and non-determinism of surface heterogeneity this approach has a potential as a global frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allen, P.B., Naney, J.W.: Hydrology of the little Washita River Watershed, Oklahoma, data and analyses. ARS-90. USDA-ARS_NAWQL, Durant. http://www.ars.usda.gov/SP2UserFiles/Place/30700510/ars-90.pdf (1991). Accessed 15 Mar 2016

  2. Al Bitar, A., Leroux, D., Kerr, Y.H., Merlin, O., Richaume, P., Sahoo, A., Wood, E.F.: Evaluation of SMOS soil moisture products over continental U.S. using the SCAN/SNOTEL network. IEEE Trans. Geosci. Remote Sens. 50(5), 1572–1586 (2012). https://doi.org/10.1109/TGRS.2012.2186581

    Article  Google Scholar 

  3. Al-Yaari, A., Wigneron, J.-P., Ducharne, A., Kerr, Y.H., Wagner, W., De Lannoy, G., Reichle, R., Al Bitar, A., Dorigo, W., Richaume, P., Mialon, A.: Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sens. Environ. 152, 614–626 (2014). https://doi.org/10.1016/j.rse.2014.07.013

    Article  Google Scholar 

  4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bircher, S., Skou, N., Kerr, Y.H.: Validation of SMOS L1C and L2 products and important parameters of the retrieval algorithm in the Skjern River Catchment, Western Denmark. IEEE Trans. Geosci. Remote Sens. 51(5), 2969–2985 (2013). https://doi.org/10.1109/TGRS.2012.2215041

    Article  Google Scholar 

  6. Crow, W.T.: An observing system simulation experiment for hydros radiometer-only soil moisture products. IEEE Trans. Geosci. Remote Sens. 43(6), 1289–1303 (2005). https://doi.org/10.1109/TGRS.2005.845645

    Article  Google Scholar 

  7. Crow, W.T., Berg A.A., Cosh M.H., Loew A., Mohanty B. P., Panciera R., de Rosnay P., Ryu D., Walker J. P.: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 50, RG2002 (2012). https://doi.org/10.1029/2011RG000372

  8. dall’Amico, T., Schlenz, F., Loew, A., Mauser, W.: First results of SMOS soil moisture validation in the upper Danube catchment. IEEE Trans. Geosci. Remote Sens. 50(5), 1507–1516 (2012). https://doi.org/10.1109/TGRS.2011.2171496

    Article  Google Scholar 

  9. De Rosnay, P., Muñoz Sabater, J., Drusch, M., Albergel, C., Balsamo, G., Boussetta, S., Isaksen, L., Thépaut, J.-N.: Bias correction for SMOS data assimilation in the ECMWF numerical weather prediction system. In: Proceedings of the ESA Living Planet Symposium, Edinburgh, 9–13 Sep 2013 (2013)

  10. De Lannoy, G.J.M., Houser, P.R., Pauwels, V.R.N., Verhoest, N.E.C.: Assessment of model uncertainty for soil moisture through ensemble verification. J. Geophys. Res. 111, D10101 (2006). https://doi.org/10.1029/2005JD006367

    Article  Google Scholar 

  11. De Keyser, E., Vernieuwe, H., Lievens, H., Álvarez-Mozos, J., De Baets, B., Verhoest, N.E.C.: Assessment of SAR-retrieved soil moisture uncertainty induced by uncertainty on modeled soil surface roughness. Int. J. Appl. Earth Obs. Geoinform. 18, 176–182 (2012). https://doi.org/10.1016/j.jag.2012.01.017

    Article  Google Scholar 

  12. de Jeu, R.A.M., Wagner, W., Holmes, T.R.H.: Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 29, 399 (2008). https://doi.org/10.1007/s10712-008-9044-0

    Article  Google Scholar 

  13. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J., Park, B., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J., Vitart, F.: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011). https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  14. Dhanya, C.T., Nagesh Kumar, D.: Nonlinear ensemble prediction of chaotic daily rainfall. Adv. Water Resour. 33(3), 327–347 (2010). https://doi.org/10.1016/j.advwatres.2010.01.001

    Article  Google Scholar 

  15. Dogusgen (Erbas), C., Hornbuckle, B.K.: A non-linear relationship between terrestrial microwave emission at 1.4 GHz and soil moisture caused by ponding of water. Remote Sens. Lett. 6(3), 238–246 (2015). https://doi.org/10.1080/2150704X.2015.1029088

    Article  Google Scholar 

  16. Ding, R., Li, J.: Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett. A 364(5), 396–400 (2007). https://doi.org/10.1016/j.physleta.2006.11.094

    Article  MATH  Google Scholar 

  17. Entekhabi, D., Yueh, S., O’Neill, P., Kellogg, K.: SMAP Handbook. JPL Publication JPL 400-1567, Jet Propulsion Laboratory, Pasadena (2014)

    Google Scholar 

  18. Entekhabi, D., Reichle, R.H., Koster, R.D., Crow, W.T.: Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeorol. 11, 832–840 (2010). https://doi.org/10.1175/2010JHM1223.1

    Article  Google Scholar 

  19. Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59, 845–8 (1987)

    Article  MathSciNet  Google Scholar 

  20. Faramin, M., Ataei, M.: Chaotic attitude analysis of a satellite via Lyapunov exponents and its robust nonlinear control subject to disturbances and uncertainties. Nonlinear Dyn. 83, 361 (2016). https://doi.org/10.1007/s11071-015-2333-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Forrester, P.J.: Asymptotics of finite system Lyapunov exponents for some random matrix ensembles. J. Phys. A Math. Theor. 48, 215205 (2015)

    Article  MathSciNet  Google Scholar 

  22. Gauss, C.F.: Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm [Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections] (1809)

  23. Guegan, D., Leroux, J.: Local Lyapunov exponents. A new way to predict chaotic systems. In: Skiadas, C.H., Dimotikalis, I., Skiadas, C. (eds.) Topics on Chaotic Systems: Selected Papers from CHAOS 2008, International Conference. World Scientific Publishing, pp. 158–185 (2009)

  24. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983a)

    Article  MathSciNet  Google Scholar 

  25. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–3 (1983b)

    Article  Google Scholar 

  26. Godina-Nava, J.J., Rodríguez Segura, M.A., Vázquez Coutiño, G.A., Serrano Luna, G., Carreto García, S.: Fundementals of physics. In: Moran-Lopez, J.L. (ed.) Evolution of Turbulence, vol. 3. Universality in Chaos, Eolss Publishers Co. Ltd./UNESCO, Oxford (2009)

    Google Scholar 

  27. Hald, A.: Galileo’s statistical analysis of astronomical observation. Int. Stat. Rev. 54(2), 211–220 (1986)

    Article  MathSciNet  Google Scholar 

  28. Holmes, T.R.H., Drusch, M., Wigneron, J.P., de Jeu, R.A.M.: A global simulation of microwave emission: error structures based on output from ECMWF’s operational integrated forecast system. IEEE Trans. Geosci. Remote Sens. 46, 846–856 (2008)

    Article  Google Scholar 

  29. Hulme, H.R., Symms, L.S.T.: The law of error and the combination of observations. Mon. Not. R. Astron. Soc. 99, 642 (1939)

    Article  Google Scholar 

  30. Jackson, T., O’Neill, P., Njoku, E., Chan, S., Bindlish, R.: Soil Moisture Active Passive (SMAP) Project Calibration and Validation for the L2/3_SM_P, Beta-Release Data Products, NASA JPL, JPL D-93981 (2015)

  31. Jollifee, I.T., Stephenson, D.B.: Forecast verification. A practitioner’s guide in atmospheric science. Wiley, New York (2003)

    Google Scholar 

  32. Just, W., Kantz, H., Rödenbeck, C., Helm, M.: Stochastic modelling: replacing fast degrees of freedom by noise. J. Phys. A Math. Gen. 34, 3199 (2001)

    Article  MathSciNet  Google Scholar 

  33. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994)

    Article  Google Scholar 

  34. Kafatos, M., Nadeau, R.: The Conscious Universe: Parts and Wholes in Physical Reality. Springer, New York (2000)

    Book  Google Scholar 

  35. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase space reconstruction using a geometric method. Phys. Rev. A 45, 3403–11 (1992)

    Article  Google Scholar 

  36. Kornelsen, K.C., Coulibaly, P.: Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J. Hydrol. 476, 460–489 (2013). https://doi.org/10.1016/j.jhydrol.2012.10.044

    Article  Google Scholar 

  37. Kim, S.B., Tsang, L., Johnson, J.T., Huang, S., van Zyl, J.J., Njoku, E.G.: Soil moisture retrieval using time-series radar observations over bare surfaces. IEEE Trans. Geosci. Remote Sens. 50(5), 1853–1863 (2012). https://doi.org/10.1109/TGRS.2011.2169454

    Article  Google Scholar 

  38. Kerr, Y.H., Waldteufel, P., Richaume, P., Wigneron, J.-P., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., Cabot, F., Gruhier, C., Juglea, S.E., et al.: The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 50, 1384–1403 (2012)

    Article  Google Scholar 

  39. Kerr, Y.H., Waldteufel, P., Richaume, P., Ferrazzoli, P., Wigneron, J.-P.: SMOS LEVEL 2 Processor Soil Moisture Algorithm Theoretical Basis Document (ATBD) v1.3h; SM-ESL (CBSA), Toulouse, p. 141 (2013)

  40. Lee, J.H.: Sequential ensembles tolerant to synthetic aperture radar (SAR) soil moisture retrieval errors. Geosciences 6, 19 (2016)

    Article  Google Scholar 

  41. Lee, J.H., Pellarin, T., Kerr, Y.H.: Inversion of soil hydraulic properties from the DEnKF analysis of SMOS soil moisture over West Africa. Agric. For. Meteorol. 188, 76–88 (2014). https://doi.org/10.1016/j.agrformet.2013.12.009

    Article  Google Scholar 

  42. Lee, J.H., Pellarin, T., Kerr, Y.H.: EnOI optimization for SMOS soil moisture over West Africa. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(4), 1821–1829 (2015). https://doi.org/10.1109/JSTARS.2015.2402232

  43. Lee, J.H., Im, J.: A novel bias correction method for soil moisture and ocean salinity (SMOS) soil moisture retrievals. Remote Sens. 7, 16045–16061 (2015). https://doi.org/10.3390/rs71215824

    Article  Google Scholar 

  44. Lee, J.H., Zhao, C., Kerr, Y.: Stochastic bias correction and uncertainty estimation of satellite-retrieved soil moisture products at foot-print scale: short-range dynamics. Remote Sens. 9(8), 847 (2017). https://doi.org/10.3390/rs908084

    Article  Google Scholar 

  45. Lei, M., Wang, Z., Feng, Z.A.: method of embedding dimension estimation based on symplectic geometry. Phys. Lett. A 303, 179–189 (2002)

    Article  MathSciNet  Google Scholar 

  46. Li, D., **, R., Zhou, J., Kang, J.: Analysis and reduction of the uncertainties in soil moisture estimation with the L-MEB model using EFAST and ensemble retrieval. IEEE Trans. Geosci. Remote Sens. 12, 1337–1341 (2015). https://doi.org/10.1109/LGRS.2015.2399776

    Article  Google Scholar 

  47. Liu, H.-F., Dai, Z.-H., Li, W.-F., Gong, X., Zun-Hong, Y.: Noise robust estimates of the largest Lyapunov exponent. Phys. Lett. A 341(1–4), 119–127 (2005). https://doi.org/10.1016/j.physleta.2005.04.048

    Article  MATH  Google Scholar 

  48. Liu, Y., Liu, C., Wang, D.: Understanding atmospheric behaviour in terms of entropy: a review of applications of the second law of thermodynamics to meteorology. Entropy 13, 211–240 (2011)

    Article  Google Scholar 

  49. Lu, H., Gong, P.: Multi-algorithm ensemble reconstruction of surface soil moisture over China from AMSR-E. IEEE Int. Geosci. Remote Sens. Sympos. Munich 2012, 718–721 (2012). https://doi.org/10.1109/IGARSS.2012.6351464

    Article  Google Scholar 

  50. Merlin, O., Malbéteau, Y., Notfi, Y., Bacon, S., Khabba, S.E.-R., Jarlan, L.: Performance metrics for soil moisture downscaling methods: application to DISPATCH data in central morocco. Remote Sens. 7, 3783–3807 (2015)

    Article  Google Scholar 

  51. Muñoz-Sabater, J.: Incorporation of passive microwave brightness temperatures in the ECMWF soil moisture analysis. Remote Sens. 7, 5758–5784 (2015)

    Article  Google Scholar 

  52. Niclòs, R., Rivas, R., García-Santos, V., Doña, C., Valor, E., Holzman, M., Bayala, M., Carmona, F., Ocampo, D., Soldano, Á., Thibeault, M., Caselles, V., Sánchez, J.M.: SMOS level-2 soil moisture product evaluation in rain-fed croplands of the Pampean Region of Argentina. IEEE Trans. Geosci. Remote Sens. 54(1), 499–512 (2016). https://doi.org/10.1109/TGRS.2015.2460332

    Article  Google Scholar 

  53. Oliva, R., Daganzo-Eusebio, E., Kerr, Y.H., Mecklenburg, S., Nieto, S.: SMOS radio frequency interference scenario : status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band. IEEE Trans. Geosci. Remote Sens. 50(5), 1427–1439 (2012)

    Article  Google Scholar 

  54. Porporato, A., Rodriguez-Iturbe, I.: From random variability to ordered structures: a search for general synthesis in ecohydrology. Ecohydrology 6, 333–342 (2013). https://doi.org/10.1002/eco.1400

    Article  Google Scholar 

  55. Rao, K.S., Girish Chandra, P.V., Rao, N.: The relationship between brightness temperature and soil moisture selection of frequency range for microwave remote sensing. Int. J. Remote Sens. 8(10), 1531–1545 (1987). https://doi.org/10.1080/01431168708954795

    Article  Google Scholar 

  56. Reichle, R.H., Koster, R.D.: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 31, L19501 (2004). https://doi.org/10.1029/2004GL020938

    Article  Google Scholar 

  57. Reichle, R.H., Koster, R.D., Liu, P., Mahanama, S.P., Njoku, E.G., Owe, M.: Comparison and assimilation of global soil moisture retrievals from the advanced microwave scanning radiometer for the earth observing system (AMSR-E) and the scanning multichannel microwave radiometer (SMMR). J. Geophys. Res. 112, D09108 (2007). https://doi.org/10.1029/2006JD008033

    Article  Google Scholar 

  58. Rodriguez-Iturbe, I., Febres De Power, B., Sharifi, M.B., Georgakakos, K.P.: Chaos in rainfall. Water Resour. Res. 25(7), 1667–1675 (1989). https://doi.org/10.1029/WR025i007p01667

    Article  Google Scholar 

  59. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–34 (1993)

    Article  MathSciNet  Google Scholar 

  60. Sadri, S., Wu, C.Q.: Modified Lyapunov exponent, new measure of dynamics. Nonlinear Dyn. 78, 2731 (2014). https://doi.org/10.1007/s11071-014-1621-9

    Article  MathSciNet  MATH  Google Scholar 

  61. Scipal, K., Holmes, T., de Jeu, R., Naeimi, V., Wagner, W.: A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett. 35, L24403 (2008). https://doi.org/10.1029/2008GL035599

    Article  Google Scholar 

  62. Schlenz, F., dall’Amico, J.T., Mauser, W., Loew, A.: Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany. Hydrol. Earth Syst. Sci. 16, 3517–3533 (2012). https://doi.org/10.5194/hess-16-3517-2012

    Article  Google Scholar 

  63. Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., Teuling, A.J.: Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci. Rev. 99(3–4), 125–161 (2010). https://doi.org/10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  64. Seneviratne, S.I., Viterbo, P., Lüthi, D., Schär, C.: Inferring changes in terrestrial water storage using ERA-40 reanalysis data: the Mississippi River basin. J. Clim. 17(11), 2039–2057 (2004)

    Article  Google Scholar 

  65. Starks, P.J., Fiebrich, C.A., Grimsley, D.L., Garbrecht, J.D., Steiner, J.L., Guzman, J.A., Moriasi, D.N.: Upper Washita River experimental watersheds: meteorologic and soil climate measurement networks. J. Environ. Qual. 43, 1239–1249 (2014a). https://doi.org/10.2134/jeq2013.08.0312

    Article  Google Scholar 

  66. Starks, P.J., Steiner, J.L., Stern, A.J.: Upper Washita River experimental watersheds: land cover data sets (1974–2007) for two southwestern Oklahoma agricultural watersheds. J. Environ. Qual. 43(6), 1310–1318 (2014b). https://doi.org/10.2134/jeq2013.07.0292

    Article  Google Scholar 

  67. Stigler, Stephen M.: The History of Statistics: The Measurement of Uncertainty before 1900. Harvard University Press, Cambridge (1986). ISBN 0-674-40340-1

    MATH  Google Scholar 

  68. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press, Perseus Books Group, Cambridge (1994)

    MATH  Google Scholar 

  69. Talone, M., Camps, A., Monerris, A., Vall-llossera, M., Ferrazzoli, P., Piles, M.: Surface topography and mixed-pixel effects on the simulated L-band brightness temperatures. IEEE Trans. Geosci. Remote Sens. 45(7), 1996–2003 (2007). https://doi.org/10.1109/TGRS.2007.898254

    Article  Google Scholar 

  70. Theiler, J., Eubank, S., Longtin, A., Galdikian, B., Farmer, J.D.: Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94 (1992)

    Article  Google Scholar 

  71. Theise, N.D., Kafatos, M.C.: Fundamental awareness: a framework for integrating science, philosophy and metaphysics. Commun. Integr. Biol. 9(3), e1155010 (2016). https://doi.org/10.1080/19420889.2016.1155010

    Article  Google Scholar 

  72. Vallejo, J.C., SanJuan, M.A.F.: Predictability of Chaotic Dynamics. A Finite-Time Lyapunov Exponents Approach. Springer, Berlin (2017)

    Book  Google Scholar 

  73. Weigel, A.P., Liniger, M.A., Appenzeller, C.: The discrete brier and ranked probability skill scores. Mon. Weather Rev. 135, 118–124 (2006)

    Article  Google Scholar 

  74. Westfall, P.H.: Kurtosis as peakedness (1905–2014) R.I.P. Am. Stat. 68(3), 191–195 (2014). https://doi.org/10.1080/00031305.2014.917055

    Article  MathSciNet  Google Scholar 

  75. Wilks, D.S.: Statistical Methods in the Atmospheric Sciences: An Introduction, 2nd edn. Elsevier, New York (2005)

    Google Scholar 

  76. Xu, M., **, X., Wang, Y.: Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dyn. 78, 1451 (2014). https://doi.org/10.1007/s11071-014-1527-6

    Article  MathSciNet  Google Scholar 

  77. Yang, C., Wu, C.Q.: A robust method on estimation of Lyapunov exponents from a noisy time series. Nonlinear Dyn. 64, 279 (2011). https://doi.org/10.1007/s11071-010-9860-x

    Article  MathSciNet  Google Scholar 

  78. Zhu, W.Q., Huang, Z.L.: Stochastic stabilization of quasi-partially integrable hamiltonian systems by using Lyapunov exponent. Nonlinear Dyn., 33, 209 (2003). https://doi.org/10.1023/A:1026010007067

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation (NRF) of Korea (NRF-2015R1C1A1A02037224, 2016K2A9A2A19939373, 2018R1D1A1B07048817) and partially by NRF of Korea through the Ministry of Science, ICT and Future Planning under Grant NRF-2017R1A1A1A05001325. We also thank “Centre Aval de Traitement des Données SMOS” (CATDS) operated for the “Centre National d’Etudes Spatiales” (CNES, France) by IFREMER (Brest, France)” for providing the SMOS data and Yann Kerr for hel** us in processing SMOS L2 soil moisture products, and M. Cosh, and P.J. Starks for providing field measurements in Oklahoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon Ki Ahn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Ahn, C.K. Stochastic relaxation of nonlinear soil moisture ocean salinity (SMOS) soil moisture retrieval errors with maximal Lyapunov exponent optimization. Nonlinear Dyn 95, 653–667 (2019). https://doi.org/10.1007/s11071-018-4588-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4588-0

Keywords

Navigation