Log in

Approximate stationary solution and stochastic stability for a class of differential equations with parametric colored noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper aims to study a class of differential equations with parametric Gaussian colored noise. We present the general framework to get the solvability conditions of the approximate stationary probability density function, which is determined by the Fokker-Planck-Kolmogorov (FPK) equations. These equations are derived using the stochastic averaging method and the operator theory with the perturbation technique. An illustrative example is proposed to demonstrate the procedure of our proposed method. The analytical expression of approximate stationary probability density function is obtained. Numerical simulation is carried out to verify the analytical results and excellent agreement can be easily found. The FPK equation for the probability density function of order ε 0 is used to examine the almost-sure stability for the amplitude process. Finally, the stability in probability of the amplitude process is investigated by Lin and Cai’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bountis, T., Mahmoud, G.M.: Synchronized periodic orbits in beam–beam interaction models of one and two spatial dimensions. Part. Accel. 22, 124–147 (1987)

    Google Scholar 

  2. Li, R.: Selfconsistent simulation of the CSR effect. In: Proceedings of the European Particle Accelerator Conference, Stockholm, Sweden, 1998. Institute of Physics, London (1998)

    Google Scholar 

  3. Month, M., Herrera, J.C. (eds.): Nonlinear Dynamics and the Beam–Beam Interaction. AIP Conference Proceedings, vol. 57. AIP, New York (1979)

    Google Scholar 

  4. Dowell, D.H., O’Shea, P.G.: Coherent synchrotron radiation included emittance growth in a chicane buncher. In: Proceedings of the Particle Accelerator Conference, Vancouver, Canada, 1997. IEEE, Piscataway (1998)

    Google Scholar 

  5. Braun, H.H., Corsini, R. et al.: Emmitance growth and energy loss due to coherent synchrotron radiation in the bunch compressor of the CLIC Test Facility (CTFII). In: Proceedings of the European Particle Accelerator Conference, Vienna, Austria, 2000. http://accelconf.web.cern.ch/AccelConf/e00/index.html

  6. Mahmoud, G.M.: On periodic orbits of nonlinear dynamical systems with many degrees of freedom. Physica A 181, 385–395 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wedig, W.V.: Dynamic stability of beams under axial forces: Lyapunov exponents for general fluctuating loads. In: Kratzig, W.B., et al. (eds.) Structural Dynamics, pp. 141–148. Balkema, Rotterdam (1990)

    Google Scholar 

  8. Cveticanin, L., Maretic, R.: A van der Pol absorber for rotor vibrations. J. Sound Vib. 173(2), 145–155 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cveticanin, L.: Vibrations of a textile machine rotor. J. Sound Vib. 97, 181–187 (1984)

    Article  Google Scholar 

  10. Cveticanin, L.: Dynamical behavior of a rotor with time dependent parameters. JSME Int. J. Ser. C 37(1), 41–48 (1994)

    Google Scholar 

  11. Muszynska, A.: Whirl and whip-rotor/bearing stability problems. J. Sound Vib. 110(3), 443–462 (1986)

    Article  Google Scholar 

  12. Genin, J., Maybee, J.S.: Stability in the three dimensional whirling problem. Int. J. Non-Linear Mech. 4, 205–215 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tondl, A.: Determination of the limit of initiation of self-excited vibration of rotors. Int. J. Non-Linear Mech. 15, 417–428 (1980)

    Article  MATH  Google Scholar 

  14. Mahmoud, G.M.: Beam–beam interaction models with a small stochastic perturbation. Physica A 216, 445–451 (1995)

    Article  Google Scholar 

  15. Xu, Y., Xu, W., Mahmoud, G.M.: On a complex beam–beam interaction model with random forcing. Physica A 336, 347–360 (2004)

    Article  Google Scholar 

  16. Xu, Y., Xu, W., Mahmoud, G.M., Lei, Y.M.: Beam–beam interaction models under narrow-band random excitation. Physica A 346, 372–386 (2005)

    Article  Google Scholar 

  17. Xu, Y., Zhang, H.Q., Xu, W.: On stochastic complex beam–beam interaction models with Gaussian colored noise. Physica A 384, 259–272 (2007)

    Article  Google Scholar 

  18. Mahmoud, G.M.: Stability regions for coupled Hill’s equations. Physica A 242, 239–249 (1997)

    Article  Google Scholar 

  19. Stratonovich, R.L.: Topics in the Theory of Random Noise. Gordon and Breach, New York (1963)

    Google Scholar 

  20. Roberts, J.B.: The energy envelope of a randomly excited non-linear oscillator. J. Sound Vib. 60, 177–185 (1978)

    Article  MATH  Google Scholar 

  21. Zhu, W.Q., Lin, Y.K.: On stochastic averaging of energy envelope. ASCE J. Eng. Mech. 117, 1890–1905 (1991)

    Article  Google Scholar 

  22. Lin, Y.K.: Some observations on the stochastic averaging method. Prob. Eng. Mech. 1, 23–27 (1986)

    Article  Google Scholar 

  23. Zhu, W.Q.: Stochastic averaging in random vibration. Appl. Mech. Rev. 41, 189–199 (1988)

    Article  Google Scholar 

  24. Blankenship, G., Papanicolaou, G.C.: Stability and control of stochastic systems with wide-band noise disturbances. SIAM J. Appl. Math. 34, 437–476 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  25. Roy, R.V.: Stochastic averaging of oscillators excited by colored Gaussian processes. Int. J. Non-Linear Mech. 29, 463–475 (1994)

    Article  MATH  Google Scholar 

  26. Klosek-Dygas, M.M., Matkowsky, B.J., Schuss, Z.: Stochastic stability of nonlinear oscillators. SIAM J. Appl. Math. 48, 1115–1127 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Klosek-Dygas, M.M., Matkowsky, B.J., Schuss, Z.: Colored noise in dynamical systems. SIAM J. Appl. Math. 48, 425–441 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu, X.B., Liew, K.M.: On the stability properties of a Van der Pol-Duffing oscillator that is driven by a real noise. J. Sound Vib. 285, 27–49 (2005)

    Article  MathSciNet  Google Scholar 

  29. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Berlin (1983)

    MATH  Google Scholar 

  30. Hänggi, P., Jung, P.: Colored noise in dynamical systems. Adv. Chem. Phys. 89, 239–326 (1995)

    Article  Google Scholar 

  31. Jung, P., Hänggi, P.: Dynamical systems: a unified colored-noise approximation. Phys. Rev. A 35, 4464–4466 (1987)

    Article  Google Scholar 

  32. Haken, H.: The Fokker–Planck Equation. Springer, Berlin (1989)

    Google Scholar 

  33. Lin, Y.K., Cai, G.Q.: Probabilistic is Structural Dynamics, Advanced Theory and Applications. McGraw-Hill, New York (1995)

    Google Scholar 

  34. Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998)

    MATH  Google Scholar 

  35. Zhu, W.Q.: Random Vibration. Science, Bei**g (1992)

    Google Scholar 

  36. Bartosh, L.: Generation of colored noise. Int. J. Mod. Phys. C 12(6), 851–855 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Xu, Y. & Xu, W. Approximate stationary solution and stochastic stability for a class of differential equations with parametric colored noise. Nonlinear Dyn 56, 213–221 (2009). https://doi.org/10.1007/s11071-008-9393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9393-8

Keywords

Navigation