Log in

Ulk1/FUNDC1 Prevents Nerve Cells from Hypoxia-Induced Apoptosis by Promoting Cell Autophagy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cell autophagy and cell apoptosis are both observed in the process of hypoxia-induced ischemic cerebral infarction (ICI). Unc-51 like autophagy activating kinase 1 (Ulk1) and FUN14 Domain-containing Protein 1 (FUNDC1) are both involved in the regulation of cell autophagy. This study aimed to investigate the regulatory effects of Ulk1 and FUNDC1 on hypoxia-induced nerve cell autophagy and apoptosis. Cell viability was measured using cell counting kit-8 (CCK-8) assay. Cell apoptosis was detected using Annexin V-PE/7-ADD staining assay. qRT-PCR was used to quantify the mRNA levels of Ulk1 and FUNDC1 in PC-12 cells. Cell transfection was performed to up-regulate the expression of Ulk1. 3-Methyladenine (3-MA) was used as autophagy inhibitor and rapamycin was used as autophagy activator in our experiments. SP600125 was used as c-Jun N-terminal kinase (JNK) inhibitor. Western blotting was performed to analyze the expression levels of key factors that are related to cell autophagy, apoptosis and JNK pathway. We found that hypoxia simultaneously induced apoptosis and autophagy of PC-12 cells. The activation of Ulk1 and FUNDC1 were also found in PC-12 cells after hypoxia induction. Overexpression of Ulk1 promoted the activation of FUNDC1 and prevented PC-12 cells from hypoxia-induced apoptosis. Suppression of Ulk1 had opposite effects. Furthermore, we also found that JNK pathway participated in the effects of Ulk1 overexpression on PC-12 cell apoptosis reduction. To conclude, Ulk1/FUNDC1 played critical regulatory roles in hypoxia-induced nerve cell autophagy and apoptosis. Overexpression of Ulk1 prevented nerve cells from hypoxia-induced apoptosis by promoting cell autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Della-Morte D, Pacifici F, Rundek T (2016) Genetic susceptibility to cerebrovascular disease. Curr Opin Lipidol 27:187–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chen PS, Cheng CL, Kao Yang YH, Li YH (2016) Statin adherence after ischemic stroke or transient ischemic attack is associated with clinical outcome. Circ J 80:731–737

    Article  PubMed  CAS  Google Scholar 

  3. Yu J, Bao C, Dong Y, Liu X (2015) Activation of autophagy in rat brain cells following focal cerebral ischemia reperfusion through enhanced expression of Atg1/pULK and LC3. Mol Med Rep 12:3339–3344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Savion N, Izigov N, Morein M, Pri-Chen S, Kotev-Emeth S (2014) S-allylmercapto-N-acetylcysteine (ASSNAC) protects cultured nerve cells from oxidative stress and attenuates experimental autoimmune encephalomyelitis. Neurosci Lett 583:108–113

    Article  PubMed  CAS  Google Scholar 

  5. Pozo Devoto VM, Bogetti ME, Fiszer de Plazas S (2013) Developmental and hypoxia-induced cell death share common ultrastructural and biochemical apoptotic features in the central nervous system. Neuroscience 252:190–200

    Article  PubMed  CAS  Google Scholar 

  6. Descloux C, Ginet V, Clarke PG, Puyal J, Truttmann AC (2015) Neuronal death after perinatal cerebral hypoxia-ischemia: focus on autophagy-mediated cell death. Int J Dev Neurosci 45:75–85

    Article  PubMed  CAS  Google Scholar 

  7. Park JM, Chang HJ, Seo M, Otto NM, Grunwald D, Kim KH, Moriarity B, Kim YM, Starker C, Nho RS (2016) The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12:547–564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li R, Zhou P, Guo Y, Lee JS, Zhou B (2017) Tris (1, 3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells: involvement of ROS-mediated AMPK/mTOR/ULK1 pathways. Food Chem Toxicol 100:183–196

    Article  PubMed  CAS  Google Scholar 

  9. Yu X, Munoz-Alarcon A, Ajayi A, Webling KE, Steinhof A, Langel U, Strom AL (2013) Inhibition of autophagy via p53-mediated disruption of ULK1 in a SCA7 polyglutamine disease model. J Mol Neurosci 50:586–599

    Article  PubMed  CAS  Google Scholar 

  10. Li Y, Zhang J, Yang C (2015) UNC-51-like kinase 1 blocks S6k1 phosphorylation contributes to neurodegeneration in Parkinson’s disease model in vitro. Biochem Biophys Res Commun 459:196–200

    Article  PubMed  CAS  Google Scholar 

  11. Jang WH, Jeong YJ, Choi SH, Urm SH, Seog DH (2017) Interaction of FUN14 domain containing 1, a mitochondrial outer membrane protein, with kinesin light chain 1 via the tetratricopeptide repeat domain. Biomed Rep 6:46–50

    Article  PubMed  CAS  Google Scholar 

  12. Cheng MY, Cheng YW, Yan J, Hu XQ, Zhang H, Wang ZR, Yin Q, Cheng W (2016) SIRT6 suppresses mitochondrial defects and cell death via the NF-kappaB pathway in myocardial hypoxia/reoxygenation induced injury. Am J Transl Res 8:5005–5015

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, Zhang X, Xue P, Zhou C, Liu L, Zhu Y, Zhang X, Li L, Zhang L, Sui S, Zhao B, Feng D (2014) ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 15:566–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhou J, Li G, Zheng Y, Shen HM, Hu X, Ming QL, Huang C, Li P, Gao N (2015) A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy 11:1259–1279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Qiang L, Wu C, Ming M, Viollet B, He YY (2013) Autophagy controls p38 activation to promote cell survival under genotoxic stress. J Biol Chem 288:1603–1611

    Article  PubMed  CAS  Google Scholar 

  16. Holmen C, Elsheikh E, Christensson M, Liu J, Johansson AS, Qureshi AR, Jalkanen S, Sumitran-Holgersson S (2007) Anti endothelial cell autoantibodies selectively activate SAPK/JNK signalling in Wegener’s granulomatosis. J Am Soc Nephrol 18:2497–2508

    Article  PubMed  CAS  Google Scholar 

  17. Yang Z, Zhao TZ, Zou YJ, Zhang JH, Feng H (2014) Hypoxia Induces autophagic cell death through hypoxia-inducible factor 1alpha in microglia. PLoS ONE 9:e96509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Scaiewicz V, Sorin V, Fellig Y, Birman T, Mizrahi A, Galula J, Abu-Lail R, Shneider T, Ohana P, Buscail L, Hochberg A, Czerniak A (2010) Use of H19 gene regulatory sequences in DNA-based therapy for pancreatic cancer. J Oncol 2010:178174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wein F, Otto T, Lambertz P, Fandrey J, Hansmann ML, Kuppers R (2015) Potential role of hypoxia in early stages of Hodgkin lymphoma pathogenesis. Haematologica 100:1320–1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  21. Yuyama K, Igarashi Y (2016) Physiological and pathological roles of exosomes in the nervous system. Biomol Concepts 7:53–68

    Article  PubMed  CAS  Google Scholar 

  22. Yousuf S, Atif F, Ahmad M, Hoda N, Ishrat T, Khan B, Islam F (2009) Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 1250:242–253

    Article  PubMed  CAS  Google Scholar 

  23. Wang S, Zhou J, Kang W, Dong Z, Wang H (2016) Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model. Bosn J Basic Med Sci 16:145–150

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Poluzzi C, Casulli J, Goyal A, Mercer TJ, Neill T, Iozzo RV (2014) Endorepellin evokes autophagy in endothelial cells. J Biol Chem 289:16114–16128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Maejima Y, Isobe M, Sadoshima J (2016) Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 95:19–25

    Article  PubMed  CAS  Google Scholar 

  26. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88

    Article  PubMed  CAS  Google Scholar 

  27. Schlafli AM, Berezowska S, Adams O, Langer R, Tschan MP (2015) Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry. Eur J Histochem 59:2481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Huang Y, Chen HJ, Zhu JH, Zhao FY, Qu Y, Mu DZ (2016) Effects of PINK1 gene on cell apoptosis and cell autophagy in neonatal mice with hypoxic-ischemic brain damage. J Contemp Pediatr [Zhongguo dang dai er ke za zhi = Chinese] 18:263–269

    Google Scholar 

  29. Duan X, Zhang T, Ding S, Wei J, Su C, Liu H, Xu G (2015) microRNA-17-5p modulates bacille calmette-guerin growth in RAW264.7 cells by targeting ULK1. PLoS ONE 10:e0138011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang XY, Wu XQ, Deng R, Sun T, Feng GK, Zhu XF (2013) Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal 25:150–158

    Article  PubMed  CAS  Google Scholar 

  31. Hansen K, Wagner B, Hamel W, Schweizer M, Haag F, Westphal M, Lamszus K (2007) Autophagic cell death induced by TrkA receptor activation in human glioblastoma cells. J Neurochem 103:259–275

    Article  PubMed  CAS  Google Scholar 

  32. Zhao D, Wang C, Tang S, Zhang C, Zhang S, Zhou Y, **ao X (2015) Reactive oxygen species-dependent JNK downregulated olaquindox-induced autophagy in HepG2 cells. J Appl Toxicol 35:709–716

    Article  PubMed  CAS  Google Scholar 

  33. Chen SY, Maa MC, Chiu LY, Wang JS, Chien CL, Lin WW (2010) WITHDRAWN: zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy 6:1

    Article  PubMed  CAS  Google Scholar 

  34. Sheng Y, Sun B, Guo WT, Zhang YH, Liu X, **ng Y, Dong DL (2013) 3-Methyladenine induces cell death and its interaction with chemotherapeutic drugs is independent of autophagy. Biochem Biophys Res Commun 432:5–9

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by Youth Research Fund of The Affiliated Hospital of Qingdao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, P., Dong, H. et al. Ulk1/FUNDC1 Prevents Nerve Cells from Hypoxia-Induced Apoptosis by Promoting Cell Autophagy. Neurochem Res 43, 1539–1548 (2018). https://doi.org/10.1007/s11064-018-2568-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2568-x

Keywords

Navigation