Log in

Ciliary Neurotrophic Factor-treated Astrocyte Conditioned Medium Regulates the L-type Calcium Channel Activity in Rat Cortical Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes are activated by ciliary neurotrophic factor (CNTF) in vivo and in vitro, however, the consequences on the L-type calcium channel (LCC) of neurons are still poorly understood. Therefore, in the present study, whole-cell patch clamp, western-blot and RT-PCR assay were performed to evaluate the effects of CNTF-treated astrocyte conditioned medium (CNTF-ACM) on LCC current (ICa-L) and the expression of Cav1.2 and Cav1.3 in Sprague–Dawley rat cortical neurons. The results revealed that CNTF-ACM enhanced the amplitude of Ica-L and the expression of Cav1.3 significantly, but had no effects on Cav1.2 expression. We also found an increase in the concentration of fibroblast growth factor-2 (FGF-2) in CNTF-ACM by ELISA assay. Taken together, these findings indicate that CNTF induces the release of factors, including FGF-2, from astrocytes, thereby potentiating the activity of LCC in cortical neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adler R, Landa K, Manthorpe M et al (1979) Cholinergic neurotrophic factorsintraocular distribution of trophic activity for ciliary neurons. Science 204:1434–1436

    Article  PubMed  CAS  Google Scholar 

  2. Sendtner M, Carroll P, Holtmann B et al (1994) Ciliary neurotrophic factor. J Neurobiol l25:1436–1453

    Article  Google Scholar 

  3. Sendtner M, Schmalbruch H, Stockli K et al (1992) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuropathy. Nature 358:502–504

    Article  PubMed  CAS  Google Scholar 

  4. Hudgins SN, Levison SW (1998) Ciliary neurotrophic factor stimulates astroglial hypertrophy in vivo and in vitro. Exp Neurol 1501:71–82

    Google Scholar 

  5. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  6. Vaca K, Wendt E (1992) Divergent effects of astroglial and microglial secretions on neuron growth and survival. Exp Neurol 118:62–72

    Article  PubMed  CAS  Google Scholar 

  7. McCarthy KD, de Vellis J (1980) Preparation of separate oligodendroglial and astrocyteroglial cell cultures from rat cerebral tissue. J cell Biol 85:890–902

    Article  PubMed  CAS  Google Scholar 

  8. Liu L, Zhao R, Bai Y et al (2006) M1 muscarinic receptors inhibit l-type Ca2+ current and M-current by divergent signal transduction cascades. J Neurosci 26:11588–11598

    Article  PubMed  CAS  Google Scholar 

  9. Ertel SI, Ertel EA, Clozel J-P (1997) T-type Ca2+ channels and pharamcological blockade: potential pathophysiological relevance. Cardiovasc Drugs Ther 11:723–739

    Article  PubMed  CAS  Google Scholar 

  10. Hell JW, Westenbroek RE, Warner C et al (1993) Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel α1 subunits. J Cell Biol 123:949–962

    Article  PubMed  CAS  Google Scholar 

  11. Liberto CM, Albrecht PJ, Herx LM, et al (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89(5):1092–1100

    Article  PubMed  CAS  Google Scholar 

  12. Sternberg EM (1997) Neural-immune interactions in health and disease. J Chin Invest 100:2641–2647

    Article  CAS  Google Scholar 

  13. Koike H, Saito H, Matsuki N (1993) Effect of fibroblast growth factors on calcium currents in acutely isolated neuronal cells from rat ventromedial hypothalamus. Neurosci Lett 150:57–60

    Article  PubMed  CAS  Google Scholar 

  14. Katsuki H, Shitaka Y, Saito H, et al (1998) A potential role of Ras-mediated signal transduction for the enhancement of depolarization-induced Ca2+ responses in hippocampal neurons by basic fibroblast growth factor. Brain Res Dev Brain Res 111:169–176

    Article  PubMed  CAS  Google Scholar 

  15. Distasi C, Munaron L, Laezza F, et al (1995) Basic fibroblast growth factor opens calcium-permeable channels in quail mesencephalic neural crest neurons. Eur J Neurosci 7:516–520

    Article  PubMed  CAS  Google Scholar 

  16. Levine ES, Dreyfus CF, Black IB, et al (1995) Differential effects of NGF and BDNF on voltage-gated calcium currents in embryonic basal forebrain neurons. J Neurosci 15:3084–3091

    PubMed  CAS  Google Scholar 

  17. Cheng B, McMahon DG, Mattson MP (1993)Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Res 607:275–285

    Article  PubMed  CAS  Google Scholar 

  18. Bouron A, Becker C, Porzig H (1999) Functional expression of voltage-gated Na+ and Ca2+ channels during neuronal differentiation of PC12 cells with nerve growth factor or forskolin. Naunyn Schmiedebergs Arch Pharmacol 359:370–377

    Article  PubMed  CAS  Google Scholar 

  19. Lei S, Dryden WF, Smith PA (1998) Involvement of Ras/MAP kinase in the regulation of Ca2+ channels in adult bullfrog sympathetic neurons by nerve growth factor. J Neurophysiol 80:1352–1361

    PubMed  CAS  Google Scholar 

  20. Baldelli P, Forni PE, Carbone E (2000) BDNF, NT-3 and NGF induce distinct new Ca2+ channel synthesis in develo** hippocampal neurons. Eur J Neurosci 12:4017–4032

    Article  PubMed  CAS  Google Scholar 

  21. Hall KE, Sheng HC, Srinivasan S, et al (2001) Treatment of aged rat sensory neurons in short-term, serum-free culture with nerve growth factor reverses the effect of ageing on neurite outgrowth, calcium currents, and neuronal survival. Brain Res 888:128–137

    Article  PubMed  CAS  Google Scholar 

  22. Ojeda SR, Ma YJ, Lee BJ, et al (2000) Glia-to-neuron signaling and the neuroendocrine control of puberty. Recent Prog Horm Res 55:197–223

    PubMed  CAS  Google Scholar 

  23. Mahesh VB, Dhandapani KM, Brann DW (2006) Role of astrocytes in reproduction and neuroprotection. Mol Cell Endocrinol 246:1–9

    Article  PubMed  CAS  Google Scholar 

  24. Zhu ZH, Yang R, Fu X, et al (2006) Astrocyte-conditioned medium protecting hippocampal neurons in primary cultures against corticosterone-induced damages via PI3-K/Akt signal pathway. Brain Res 1114:1–10

    Article  PubMed  CAS  Google Scholar 

  25. Taylor AR, Gifondorwa DJ, Newbern JM, et al ( 2007) Astrocyte and muscle-derived secreted factors differentially regulate motoneuron survival. J Neurosci 27:634–644

    Article  PubMed  CAS  Google Scholar 

  26. Asada H, Ip NY, Pan L, et al (1995) Time course of ciliary neurotrophic factor mRNA expression is coincident with the presence of protoplasmic astrocytes in traumatized rat striatum. J Neurosci Res 40:22–30

    Article  PubMed  CAS  Google Scholar 

  27. Ip NY, McClain J, Barrezueta NX, et al (1993a) The α component of the CNTF receptor is required for signaling and defines potential CNTF targets in the adult and during development. Neuron 10:89–102

    Article  PubMed  CAS  Google Scholar 

  28. Rudge JS, Li Y, Pasnikowski EM, et al (1994a) Neurotrophic factor receptors and their signal transduction in rat astrocytes. Eur J Neurosci 6:693–705

    Article  PubMed  CAS  Google Scholar 

  29. Levison SW, Hudgins SN, Crawford JL (1998) Ciliary neurotrophic factor stimulates nuclear hypertrophy and increases the GFAP content of cultured astrocytes. Brain Res 803:189–193

    Article  PubMed  CAS  Google Scholar 

  30. Levison SW, Ducceschi MH, Young GM, et al (1996) Acute exposure to CNTF in vivo induces multiple components of reactive gliosis. Exp Neurol 141:256–268

    Article  PubMed  CAS  Google Scholar 

  31. Holm NR, Christophersen P, Hounsgaard J, et al (2002) CNTF inhibits high voltage activated Ca2+ currents in fetal mouse cortical neurones. J Neurochem 82:495–503

    Article  PubMed  CAS  Google Scholar 

  32. Albrecht PJ, Dahl JP, Stoltzfus OK, et al (2002) Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp Neurol 173:46–62

    Article  PubMed  CAS  Google Scholar 

  33. Albrecht PJ, Murtie JC, Ness JK, et al (2003) Astrocytes produce CNTF during the remyelination phase of viral-induced spinal cord demyelination to stimulate FGF-2 production. Neurobiol Dis 13:89–101

    Article  PubMed  CAS  Google Scholar 

  34. Baldelli P, Forni PE, Carbone E (2000) BDNF, NT-3 and NGF induce distinct new Ca2+ channel synthesis in develo** hippocampal neurons. Eur J Neurosci 12:4017–4032

    Article  PubMed  CAS  Google Scholar 

  35. Yang S, Liu ZW, Wen L, et al (2005) Interleukin-1beta enhances NMDA receptor-mediated current but inhibits excitatory synaptic transmission. Brain Res 1034:172–179

    Article  PubMed  CAS  Google Scholar 

  36. Fukuhara S, Mukai H, Munekata E, (1997) Activin A and all-trans-retinoic acid cooperatively enhanced the functional activity of L-type Ca2+ channels in the neuroblastoma C1300 cell line. Biochem Biophys Res Commun 241:363–368

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Natural Science Foundation of China (grant numbers: 30230140) and Doctor Point Foundation of Ministry of Education of China (grant number 20040487060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengli Li.

Additional information

**ao**g Wang and Honghua Zheng contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zheng, H., Liu, C. et al. Ciliary Neurotrophic Factor-treated Astrocyte Conditioned Medium Regulates the L-type Calcium Channel Activity in Rat Cortical Neurons. Neurochem Res 33, 826–832 (2008). https://doi.org/10.1007/s11064-007-9514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9514-7

Keywords

Navigation