Log in

Attenuation of Formalin-Induced Inflammatory Nociception by Propentofylline: Modulation of Glia

  • Published:
Neurophysiology Aims and scope

We examined the effects of propentofylline (PPF) injected intracerebroventricularly (i.c.v., 30 mM, 10 μl) into female Sprague–Dawley rats on pain responses in the formalin test and on the number of glial fibrillary acidic protein-immunopositive (GFAP-ip) astrocytes in the caudatoputamen (CPu) and periaqueductal grey (PAG) of these animals. The mean durations of flinch and lifting/biting of the limb in the PPF group vs. the vehicle (normal saline) group within phase 1 of the pain response were 280.0 ± ± 71.6 vs. 401.0 ± 69.0 sec and 69.5 ± 34.8 vs. 145.5 ± 18.6 sec, respectively (P > 0.05 in both cases, n = 7). During phase 2, the respective figures were 152.6 ± 104.0 vs. 1602.7 ± 100.9 sec and 79.1 ± ± 69.1 vs. 376.1 ± 56.5 sec (P < 0.01 in both cases). The mean numbers of GFAP-positive astrocytes per slice observed in the PPF and vehicle groups in the CPu were 35 ± 3.1 vs. 55 ± 1.9 (P < 0.01, n = 7), and those in the PAG were 30 ± 2.2 vs. 49 ± 1.2 (P < 0.01, n = 11). Thus, i. c.v. administration of PPF suppresses inflammatory pain induced by formalin injection in rats; there are reasons to believe that glial cells (astrocytes) in certain brain structures are intensely involved in the formation of a sensation of inflammatory pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Dublin and M. Hanani, “Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain,” Brain. Behav. Immun., 21, No. 5, 592–598 (2007).

    Article  PubMed  CAS  Google Scholar 

  2. S. Maeda, A. Kawamoto, Y. Yatani, et al., “Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats,” Mol. Pain., 4, 65 (2008).

    Article  PubMed  Google Scholar 

  3. L. Vitkovic, J. Bockaert, and C. Jacque, “Inflammatory” cytokines: neuromodulators in normal brain? J. Neurochem., 74, No. 2, 457–471 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. Y. S. Deng, J. H. Zhong, and X. F. Zhou, “Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury,” Exp. Neurol., 164, No. 2, 344–350 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. X. F. Zhou, Y. S. Deng, C. J. **an, et al., “Neurotrophins from dorsal root ganglia trigger allodynia after spinal nerve injury in rats,” Eur. J. Neurosci., 12, No. 1, 100–105 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. H. U. Saragovi and K. Gehring, “Development of pharmacological agents for targeting neurotrophins and their receptors,” Trends. Pharmacol. Sci., 21, No. 3, 93–98 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. F. E. Parkinson, A. R. Paterson, J. D. Young, et al., “Inhibitory effects of propentofylline on [3H]adenosine influx. A study of three nucleoside transport systems,” Biochem. Pharmacol., 46, No. 5, 891–896 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. T. Ohkubo, Y. Mitsumoto, and T. Mohri, “Characterization of the uptake of adenosine by cultured rat hippocampal cells and inhibition of the uptake by xanthine derivatives,” Neurosci. Lett., 133, No. 2, 275–278 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. M. Yao, X. Y. Chang, Y. X. Chu, et al., “Antiallodynic effects of propentofylline Elicited by interrupting spinal glial function in a rat model of bone cancer pain,” J. Neurosci. Res., 89, No. 11, 1877–1886 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. V. L. Tawfik, M. R. Regan, C. Haenggeli, et al., “Propentofylline-induced astrocyte modulation leads to alterations in glial glutamate promoter activation following spinal nerve transection,” Neuroscience, 152, No. 4, 1086–1092 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. G. E. Ringheim, “Glial modulating and neurotrophic properties of propentofylline and its application to Alzheimer’s disease and vascular dementia,” Ann. N. Y. Acad. Sci., 903, 529–534 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. G. Paxinos, C. Watson, M. Pennisi, et al., “Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight,” J. Neurosci. Methods, 13, No. 2, 139–143 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. Y. K. Han, S. H. Lee, H. J. Jeong, et al., “Analgesic effects of intrathecal curcumin in the rat formalin test,” Korean. J. Pain, 25, No. 1, 1–6 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. J. E. Torres-Lopez, M. I. Ortiz, G. Castaneda-Hernandez, et al., “Comparison of the antinociceptive effect of celecoxib, diclofenac and resveratrol in the formalin test,” Life Sci., 70, No. 14, 1669–1676 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. D. A. Cockayne, S. G. Hamilton, Q. M. Zhu, et al., “Urinary bladder hyporeflexia and reduced pain-related behavior in P2X3-deficient mice,” Nature, 407, No. 6807, 1011–1015 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. A. M. Aloisi and I. Ceccarelli, “Role of gonadal hormones in formalin-induced pain responses of male rats: modulation by estradiol and naloxone administration,” Neuroscience, 95, No. 2, 559–566 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. S. C. Kao, X. Zhao, C. Y. Lee, et al., “Absence of μ opioid receptor mRNA expression in astrocytes and microglia of rat spinal cord, ” NeuroReport, 18, 378–384 (2012).

    Article  Google Scholar 

  18. J. Bachynsky, P. McCracken, D. Lier, et al., “Propentofylline treatment for Alzheimer disease and vascular dementia: an economic evaluation based on functional abilities,” Alzheimer Dis. Assoc. Disord, 14, 102–111 (2000).

    Article  PubMed  CAS  Google Scholar 

  19. B. Kittner, “Clinical trials of propentofylline in vascular dementia. European/Canadian propentofylline study group,” Alzheimer Dis. Assoc. Disord, 13, No. 3, 166–171 (1999).

    Article  Google Scholar 

  20. S. M. Sweitzer, P. Schubert, J. A. DeLeo, “Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain,” J. Pharmacol. Exp. Ther., 297, No. 3, 1210–1217 (2001).

    PubMed  CAS  Google Scholar 

  21. M. Dorazil-Dudzik, J. Mika, M. K. Schafer, et al., “The effects of local pentoxifylline and propentofylline treatment on formalin-induced pain and tumor necrosis factor-alpha messenger RNA levels in the inflamed tissue of the rat paw,” Anesth. Analg., 98, No. 6, 1566–1573 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. S. D. Shields, D. J. Cavanaugh, H. Lee, et al., “Pain behavior in the formalin test persists after ablation of the great majority of C-fiber nociceptors,” Pain, 151, No. 2, 422–429 (2010).

    Article  Google Scholar 

  23. E. Eisenberg, B. P. Vos, and A. M. Strassman, “The NMDA antagonist Memantine blocks pain behavior in a rat model of formalin-induced facial pain,” Pain, 54, No. 3, 301–307 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. K. Wiech, M. Ploner, and I. Tracey, “Neurocognitive aspects of pain perception,” Trends Cogn. Sci., 12, No. 8, 306–313 (2008).

    Article  PubMed  Google Scholar 

  25. J. Kong, P. C. Tu, C. Zyloney, et al., “Intrinsic functional connectivity of the periaqueductal gray, a resting fMRI study,” Behav. Brain Res., 211, No. 2, 215–219 (2010).

    Article  PubMed  Google Scholar 

  26. A. P. Wunderlich, R. Klug, G. Stuber, et al., “Caudate nucleus and insular activation during a pain suppression paradigm comparing thermal and electrical stimulation,” Open Neuroimag J., 5, 1–8 (2011).

    Article  PubMed  Google Scholar 

  27. D. R. Loyd and A. Z. Murphy, “The role of the periaqueductal gray in the modulation of pain in males and females: are the anatomy and physiology really that different?” Neural. Plast., 2009, 462879 (2009).

    Article  PubMed  Google Scholar 

  28. B. Ying, N. Lu, Y. Q. Zhang, et al., “Involvement of spinal glia in tetanically sciatic stimulation-induced bilateral mechanical allodynia in rats,” Biochem. Biophys. Res. Commun, 340, 1264–1272 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. L. L. Liang, J. L. Yang, N. Lu, et al., “Synergetic analgesia of propentofylline and electroacupuncture by interrupting spinal glial function in rats,” Neurochem. Res., 35, No. 11, 1780–1786 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. S. M. Sweitzer, P. Schubert, and J. A. DeLeo, “Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain,” J. Pharmacol. Exp. Ther., 297, 1210–1217 (2001).

    PubMed  CAS  Google Scholar 

  31. H. Cao and Y. Q. Zhang, “Spinal glial activation contributes to pathological pain states,” Neurosci. Biobehav. Rev., 32, 972–983 (2008).

    Article  PubMed  Google Scholar 

  32. L. R. Watkins, E. D. Milligan, and S. F. Maier, “Glial activation: a driving force for pathological pain,” Trends Neurosci., 24, 450–455 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-Q. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, ML., Yu, HX., Tian, J. et al. Attenuation of Formalin-Induced Inflammatory Nociception by Propentofylline: Modulation of Glia. Neurophysiology 44, 441–447 (2012). https://doi.org/10.1007/s11062-012-9315-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9315-8

Keywords

Navigation