Log in

Neurocognitive considerations in the treatment of meningioma with radiation therapy: applications for quantitative neuroimaging and precision radiation medicine

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

This article focuses on the role of radiotherapy in the management of meningioma, in the definitive and adjuvant setting and across the spectrum of meningioma grade. Treatment paradigms, informed by clinical evidence, are discussed. Notably, we focus on the impact of radiotherapy on normal brain tissues and neurocognitive function, particularly the dose-dependent changes in white matter and cerebral cortex thickness. Novel imaging techniques have allowed the identification of microstructural changes to eloquent white matter, cortex, and subcortical regions as biomarkers for understanding RT-induced changes in cognitive functioning. Deficits in multiple domains including attention, memory, language and executive function can become more pronounced following radiation. Longitudinal assessment with imaging and neurocognitive testing pre- and post-radiation have allowed correlation between dose to specific regions of the brain and decline in associated domains of neurocognitive function. These findings suggest incorporation of areas at higher risk for neurocognitive sequelae into precision radiation planning. Volumetric arc therapy, advanced planning with cortical sparing, proton therapy and stereotactic radiosurgery are reviewed as options for delivering therapeutic dose to target volumes while minimizing risk to adjacent sensitive regions. The treatment of meningioma is an evolving area, with improving outcomes for higher grade disease in modern trials, where care must be taken to maximize both disease control as well as quality of life for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21:v1–v100. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  PubMed Central  Google Scholar 

  2. Willis J, Smith C, Ironside JW et al (2005) The accuracy of meningioma grading: a 10-year retrospective audit. Neuropathol Appl Neurobiol 31:141–149. https://doi.org/10.1111/j.1365-2990.2004.00621.x

    Article  CAS  PubMed  Google Scholar 

  3. Pearson BE, Markert JM, Fisher WS et al (2008) Hitting a moving target: evolution of a treatment paradigm for atypical meningiomas amid changing diagnostic criteria: a case series. FOC 24:E3. https://doi.org/10.3171/FOC/2008/24/5/E3

    Article  Google Scholar 

  4. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stafford SL, Perry A, Suman VJ et al (1998) Primarily resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc 73:936–942. https://doi.org/10.4065/73.10.936

    Article  CAS  PubMed  Google Scholar 

  6. Aghi MK, Carter BS, Cosgrove GR et al (2009) Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 64:56–60. https://doi.org/10.1227/01.NEU.0000330399.55586.63

    Article  PubMed  Google Scholar 

  7. Komotar RJ, Iorgulescu JB, Raper DMS et al (2012) The role of radiotherapy following gross-total resection of atypical meningiomas. J Neurosurg 117:679–686. https://doi.org/10.3171/2012.7.JNS112113

    Article  PubMed  Google Scholar 

  8. Wang C, Kaprealian TB, Suh JH et al (2017) Overall survival benefit associated with adjuvant radiotherapy in WHO grade II meningioma. Neuro Oncol 19:1263–1270. https://doi.org/10.1093/neuonc/nox007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shakir SI, Souhami L, Petrecca K et al (2018) Prognostic factors for progression in atypical meningioma. J Neurosurg 129:1240–1248. https://doi.org/10.3171/2017.6.JNS17120

    Article  PubMed  Google Scholar 

  10. Sun SQ, Hawasli AH, Huang J et al (2015) An evidence-based treatment algorithm for the management of WHO Grade II and III meningiomas. FOC 38:E3. https://doi.org/10.3171/2015.1.FOCUS14757

    Article  Google Scholar 

  11. Haider S, Taphoorn MJB, Drummond KJ, Walbert T (2021) Health-related quality of life in meningioma. Neuro-Oncol Adv 3:vdab089. https://doi.org/10.1093/noajnl/vdab089

    Article  Google Scholar 

  12. Karsy M, Jensen MR, Guan J et al (2019) EQ-5D quality-of-life analysis and cost-effectiveness after skull base meningioma resection. Neurosurg 85:E543–E552. https://doi.org/10.1093/neuros/nyz040

    Article  Google Scholar 

  13. Bommakanti K, Somayajula S, Suvarna A et al (2016) Pre-operative and post-operative cognitive deficits in patients with supratentorial meningiomas. Clin Neurol Neurosurg 143:150–158. https://doi.org/10.1016/j.clineuro.2016.02.033

    Article  PubMed  Google Scholar 

  14. Meskal I, Gehring K, Rutten G-JM, Sitskoorn MM (2016) Cognitive functioning in meningioma patients: a systematic review. J Neurooncol 128:195–205. https://doi.org/10.1007/s11060-016-2115-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maclean J, Fersht N, Short S (2014) Controversies in radiotherapy for meningioma. Clin Oncol (R Coll Radiol) 26:51–64. https://doi.org/10.1016/j.clon.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  16. Rogers L, Pugh S, Vogelbaum M et al (2020) CTNI-57. LOW-RISK MENINGIOMA: OUTCOMES FROM NRG ONCOLOGY/RTOG 0539. Neuro-Oncol 22:55–56. https://doi.org/10.1093/neuonc/noaa215.223

    Article  Google Scholar 

  17. Rogers L, Zhang P, Vogelbaum MA et al (2018) Intermediate-risk meningioma: initial outcomes from NRG Oncology RTOG 0539. J Neurosurg 129:35–47. https://doi.org/10.3171/2016.11.JNS161170

    Article  PubMed  Google Scholar 

  18. Rogers CL, Won M, Vogelbaum MA et al (2020) High-risk meningioma: initial outcomes from NRG oncology/RTOG 0539. Int J Radiat Oncol Biol Phys 106:790–799. https://doi.org/10.1016/j.ijrobp.2019.11.028

    Article  PubMed  Google Scholar 

  19. Weber DC, Ares C, Villa S et al (2018) Adjuvant postoperative high-dose radiotherapy for atypical and malignant meningioma: a phase-II parallel non-randomized and observation study (EORTC 22042–26042). Radiother Oncol 128:260–265. https://doi.org/10.1016/j.radonc.2018.06.018

    Article  PubMed  Google Scholar 

  20. Marciscano AE, Stemmer-Rachamimov AO, Niemierko A et al (2016) Benign meningiomas (WHO Grade I) with atypical histological features: correlation of histopathological features with clinical outcomes. JNS 124:106–114. https://doi.org/10.3171/2015.1.JNS142228

    Article  Google Scholar 

  21. Little KM, Friedman AH, Sampson JH et al (2005) Surgical management of petroclival meningiomas: defining resection goals based on risk of neurological morbidity and tumor recurrence rates in 137 patients. Neurosurgery 56:546–559. https://doi.org/10.1227/01.neu.0000153906.12640.62

    Article  PubMed  Google Scholar 

  22. Sindou M, Wydh E, Jouanneau E et al (2007) Long-term follow-up of meningiomas of the cavernous sinus after surgical treatment alone. JNS 107:937–944. https://doi.org/10.3171/JNS-07/11/0937

    Article  Google Scholar 

  23. Combs SE, Adeberg S, Dittmar J-O et al (2013) Skull base meningiomas: long-term results and patient self-reported outcome in 507 patients treated with fractionated stereotactic radiotherapy (FSRT) or intensity modulated radiotherapy (IMRT). Radiother Oncol 106:186–191. https://doi.org/10.1016/j.radonc.2012.07.008

    Article  PubMed  Google Scholar 

  24. Combs SE, Farzin M, Boehmer J et al (2018) Clinical outcome after high-precision radiotherapy for skull base meningiomas: Pooled data from three large German centers for radiation oncology. Radiother Oncol 127:274–279. https://doi.org/10.1016/j.radonc.2018.03.006

    Article  PubMed  Google Scholar 

  25. Hénaux P-L, Bretonnier M, Le Reste P-J, Morandi X (2018) Modern management of meningiomas compressing the optic nerve: a systematic review. World Neurosurg 118:e677–e686. https://doi.org/10.1016/j.wneu.2018.07.020

    Article  PubMed  Google Scholar 

  26. Saeed P, Blank L, Selva D et al (2010) Primary radiotherapy in progressive optic nerve sheath meningiomas: a long-term follow-up study. Br J Ophthalmol 94:564–568. https://doi.org/10.1136/bjo.2009.166793

    Article  PubMed  Google Scholar 

  27. Brower JV, Amdur RJ, Kirwan J et al (2013) Radiation therapy for optic nerve sheath meningioma. Pract Radiat Oncol 3:223–228. https://doi.org/10.1016/j.prro.2012.06.010

    Article  PubMed  Google Scholar 

  28. Lesser RL, Knisely JPS, Wang SL et al (2010) Long-term response to fractionated radiotherapy of presumed optic nerve sheath meningioma. Br J Ophthalmol 94:559–563. https://doi.org/10.1136/bjo.2009.167346

    Article  PubMed  Google Scholar 

  29. Chun S-W, Kim KM, Kim M-S et al (2021) Adjuvant radiotherapy versus observation following gross total resection for atypical meningioma: a systematic review and meta-analysis. Radiat Oncol 16:34. https://doi.org/10.1186/s13014-021-01759-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goldbrunner R, Stavrinou P, Jenkinson MD et al (2021) EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol 23:1821–1834. https://doi.org/10.1093/neuonc/noab150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Combs SE, Baumert BG, Bendszus M et al (2021) ESTRO ACROP guideline for target volume delineation of skull base tumors. Radiother Oncol 156:80–94. https://doi.org/10.1016/j.radonc.2020.11.014

    Article  PubMed  Google Scholar 

  32. Greene-Schloesser D, Robbins ME (2012) Radiation-induced cognitive impairment-from bench to bedside. Neuro-Oncol 14:iv37–iv44. https://doi.org/10.1093/neuonc/nos196

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu PH, Coultrap S, Pinnix C et al (2012) Radiation induces acute alterations in neuronal function. PLoS ONE 7:e37677. https://doi.org/10.1371/journal.pone.0037677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gondi V, Hermann BP, Mehta MP, Tomé WA (2013) Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 85:348–354. https://doi.org/10.1016/j.ijrobp.2012.11.031

    Article  PubMed  Google Scholar 

  35. Xu Y, Lin Q, Han Z et al (2016) Intrinsic functional network architecture of human semantic processing: modules and hubs. Neuroimage 132:542–555. https://doi.org/10.1016/j.neuroimage.2016.03.004

    Article  PubMed  Google Scholar 

  36. Huynh-Le M-P, Tibbs MD, Karunamuni R et al (2021) Microstructural injury to corpus callosum and intrahemispheric white matter tracts correlate with attention and processing speed decline after brain radiation. Int J Radiat Oncol Biol Phys 110:337–347. https://doi.org/10.1016/j.ijrobp.2020.12.046

    Article  PubMed  PubMed Central  Google Scholar 

  37. Salans M, Tibbs MD, Karunamuni R et al (2021) Longitudinal change in fine motor skills after brain radiotherapy and in vivo imaging biomarkers associated with decline. Neuro Oncol 23:1393–1403. https://doi.org/10.1093/neuonc/noab017

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tringale KR, Nguyen T, Bahrami N et al (2019) Identifying early diffusion imaging biomarkers of regional white matter injury as indicators of executive function decline following brain radiotherapy: a prospective clinical trial in primary brain tumor patients. Radiother Oncol 132:27–33. https://doi.org/10.1016/j.radonc.2018.11.018

    Article  PubMed  Google Scholar 

  39. Tringale KR, Nguyen TT, Karunamuni R et al (2019) quantitative imaging biomarkers of damage to critical memory regions are associated with post-radiation therapy memory performance in brain tumor patients. Int J Radiat Oncol Biol Phys 105:773–783. https://doi.org/10.1016/j.ijrobp.2019.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tibbs MD, Huynh-Le M-P, Karunamuni R et al (2020) Microstructural injury to left-sided perisylvian white matter predicts language decline after brain radiation therapy. Int J Radiat Oncol Biol Phys 108:1218–1228. https://doi.org/10.1016/j.ijrobp.2020.07.032

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brown WR, Thore CR, Moody DM et al (2005) Vascular damage after fractionated whole-brain irradiation in rats. Radiat Res 164:662–668. https://doi.org/10.1667/rr3453.1

    Article  CAS  PubMed  Google Scholar 

  42. Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 13:52–64. https://doi.org/10.1038/nrneurol.2016.185

    Article  CAS  PubMed  Google Scholar 

  43. Panagiotakos G, Alshamy G, Chan B et al (2007) Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS ONE 2:e588. https://doi.org/10.1371/journal.pone.0000588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8:955–962. https://doi.org/10.1038/nm749

    Article  CAS  PubMed  Google Scholar 

  45. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. segmentation and surface reconstruction. Neuroimage 9:179–194. https://doi.org/10.1006/nimg.1998.0395

    Article  CAS  PubMed  Google Scholar 

  46. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207. https://doi.org/10.1006/nimg.1998.0396

    Article  CAS  PubMed  Google Scholar 

  47. Kuperberg GR, Broome MR, McGuire PK et al (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60:878. https://doi.org/10.1001/archpsyc.60.9.878

    Article  PubMed  Google Scholar 

  48. Fjell AM, Westlye LT, Amlien I et al (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19:2001–2012. https://doi.org/10.1093/cercor/bhn232

    Article  PubMed  PubMed Central  Google Scholar 

  49. Connor M, Karunamuni R, McDonald C et al (2016) Dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 121:209–216. https://doi.org/10.1016/j.radonc.2016.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chapman CH, Nagesh V, Sundgren PC et al (2012) Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline. Int J Radiat Oncol Biol Phys 82:2033–2040. https://doi.org/10.1016/j.ijrobp.2011.01.068

    Article  PubMed  Google Scholar 

  51. Chapman CH, Zhu T, Nazem-Zadeh M et al (2016) Diffusion tensor imaging predicts cognitive function change following partial brain radiotherapy for low-grade and benign tumors. Radiother Oncol 120:234–240. https://doi.org/10.1016/j.radonc.2016.06.021

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nagesh V, Tsien CI, Chenevert TL et al (2008) Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. Int J Radiat Oncol Biol Phys 70:1002–1010. https://doi.org/10.1016/j.ijrobp.2007.08.020

    Article  PubMed  PubMed Central  Google Scholar 

  53. Raber J, Rola R, LeFevour A et al (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162:39–47. https://doi.org/10.1667/RR3206

    Article  CAS  PubMed  Google Scholar 

  54. Mineyeva OA, Bezriadnov DV, Kedrov AV et al (2018) Radiation induces distinct changes in defined subpopulations of neural stem and progenitor cells in the adult hippocampus. Front Neurosci 12:1013. https://doi.org/10.3389/fnins.2018.01013

    Article  PubMed  Google Scholar 

  55. Seibert TM, Karunamuni R, Bartsch H et al (2017) Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging. Int J Radiat Oncol Biol Phys 97:263–269. https://doi.org/10.1016/j.ijrobp.2016.10.035

    Article  PubMed  Google Scholar 

  56. Okoukoni C, McTyre ER, Ayala Peacock DN et al (2017) Hippocampal dose volume histogram predicts hopkins verbal learning test scores after brain irradiation. Adv Radiat Oncol 2:624–629. https://doi.org/10.1016/j.adro.2017.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim YJ, Cho H, Kim YJ et al (2015) Apolipoprotein e4 affects topographical changes in hippocampal and cortical atrophy in Alzheimer’s disease dementia: a five-year longitudinal study. J Alzheimers Dis 44:1075–1085. https://doi.org/10.3233/JAD-141773

    Article  CAS  PubMed  Google Scholar 

  58. Storsve AB, Fjell AM, Yendiki A, Walhovd KB (2016) Longitudinal changes in white matter tract integrity across the adult lifespan and its relation to cortical thinning. PLoS ONE 11:e0156770. https://doi.org/10.1371/journal.pone.0156770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McDonald CR, Gharapetian L, McEvoy LK et al (2012) Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment. Neurobiol Aging 33:242–253. https://doi.org/10.1016/j.neurobiolaging.2010.03.015

    Article  PubMed  Google Scholar 

  60. Karunamuni R, Bartsch H, White NS et al (2016) Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma. Int J Radiat Oncol Biol Phys 94:297–304. https://doi.org/10.1016/j.ijrobp.2015.10.026

    Article  PubMed  Google Scholar 

  61. Lin J, Lv X, Niu M et al (2017) Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. Neuroimage Clin 14:610–621. https://doi.org/10.1016/j.nicl.2017.02.025

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nagtegaal SHJ, David S, van der Boog ATJ et al (2019) Changes in cortical thickness and volume after cranial radiation treatment: a systematic review. Radiother Oncol 135:33–42. https://doi.org/10.1016/j.radonc.2019.02.013

    Article  PubMed  Google Scholar 

  63. Seibert TM, Karunamuni R, Kaifi S et al (2017) Cerebral cortex regions selectively vulnerable to radiation dose-dependent atrophy. Int J Radiat Oncol Biol Phys 97:910–918. https://doi.org/10.1016/j.ijrobp.2017.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  64. Connor M, Karunamuni R, McDonald C et al (2017) Regional susceptibility to dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 123:209–217. https://doi.org/10.1016/j.radonc.2017.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  65. Murzin VL, Woods K, Moiseenko V et al (2018) 4π plan optimization for cortical-sparing brain radiotherapy. Radiother Oncol 127:128–135. https://doi.org/10.1016/j.radonc.2018.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  66. Karunamuni RA, Moore KL, Seibert TM et al (2016) Radiation sparing of cerebral cortex in brain tumor patients using quantitative neuroimaging. Radiother Oncol 118:29–34. https://doi.org/10.1016/j.radonc.2016.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  67. Arvold ND, Niemierko A, Broussard GP et al (2012) Projected second tumor risk and dose to neurocognitive structures after proton versus photon radiotherapy for benign meningioma. Int J Radiat Oncol Biol Phys 83:e495–e500. https://doi.org/10.1016/j.ijrobp.2011.10.056

    Article  PubMed  Google Scholar 

  68. Florijn MA, Sharfo AWM, Wiggenraad RGJ et al (2020) Lower doses to hippocampi and other brain structures for skull-base meningiomas with intensity modulated proton therapy compared to photon therapy. Radiother Oncol 142:147–153. https://doi.org/10.1016/j.radonc.2019.08.019

    Article  CAS  PubMed  Google Scholar 

  69. Lesueur P, Calugaru V, Nauraye C et al (2019) Proton therapy for treatment of intracranial benign tumors in adults: a systematic review. Cancer Treat Rev 72:56–64. https://doi.org/10.1016/j.ctrv.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  70. Halasz LM, Bussière MR, Dennis ER et al (2011) Proton stereotactic radiosurgery for the treatment of benign meningiomas. Int J Radiat Oncol Biol Phys 81:1428–1435. https://doi.org/10.1016/j.ijrobp.2010.07.1991

    Article  PubMed  Google Scholar 

  71. Weber DC, Bizzocchi N, Bolsi A, Jenkinson MD (2020) Proton therapy for intracranial meningioma for the treatment of primary/recurrent disease including re-irradiation. Front Oncol 10:558845. https://doi.org/10.3389/fonc.2020.558845

    Article  PubMed  PubMed Central  Google Scholar 

  72. Song J, Aljabab S, Abduljabbar L et al (2021) Radiation-induced brain injury in patients with meningioma treated with proton or photon therapy. J Neurooncol 153:169–180. https://doi.org/10.1007/s11060-021-03758-y

    Article  CAS  PubMed  Google Scholar 

  73. Buizza G, Zampini MA, Riva G et al (2021) Investigating DWI changes in white matter of meningioma patients treated with proton therapy. Phys Med 84:72–79. https://doi.org/10.1016/j.ejmp.2021.03.027

    Article  PubMed  Google Scholar 

  74. Paganetti H (2014) Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 59:R419-472. https://doi.org/10.1088/0031-9155/59/22/R419

    Article  PubMed  Google Scholar 

  75. Kondziolka D, Mathieu D, Lunsford LD et al (2008) Radiosurgery as definitive management of intracranial meningiomas. Neurosurgery 62:53–58. https://doi.org/10.1227/01.NEU.0000311061.72626.0D

    Article  PubMed  Google Scholar 

  76. Santacroce A, Walier M, Régis J et al (2012) Long-term tumor control of benign intracranial meningiomas after radiosurgery in a series of 4565 patients. Neurosurgery 70:32–39. https://doi.org/10.1227/NEU.0b013e31822d408a

    Article  PubMed  Google Scholar 

  77. Pollock BE, Stafford SL, Utter A et al (2003) Stereotactic radiosurgery provides equivalent tumor control to Simpson Grade 1 resection for patients with small- to medium-size meningiomas. Int J Radiat Oncol Biol Phys 55:1000–1005. https://doi.org/10.1016/s0360-3016(02)04356-0

    Article  PubMed  Google Scholar 

  78. Santacroce A, Tuleasca C, Liščák R et al (2022) Stereotactic radiosurgery for benign cavernous sinus meningiomas: a multicentre study and review of the literature. Cancers (Basel) 14:4047. https://doi.org/10.3390/cancers14164047

    Article  PubMed  Google Scholar 

  79. Attia A, Chan MD, Mott RT et al (2012) Patterns of failure after treatment of atypical meningioma with gamma knife radiosurgery. J Neurooncol 108:179–185. https://doi.org/10.1007/s11060-012-0828-1

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sethi RA, Rush SC, Liu S et al (2015) Dose-response relationships for meningioma radiosurgery. Am J Clin Oncol 38:600–604. https://doi.org/10.1097/COC.0000000000000008

    Article  PubMed  Google Scholar 

  81. Kowalchuk RO, Shepard MJ, Sheehan K et al (2021) Treatment of WHO grade 2 meningiomas with stereotactic radiosurgery: identification of an optimal group for SRS using RPA. Int J Radiat Oncol Biol Phys 110:804–814. https://doi.org/10.1016/j.ijrobp.2021.01.048

    Article  PubMed  Google Scholar 

  82. Xue J, Emami B, Grimm J et al (2018) Clinical evidence for dose tolerance of the central nervous system in hypofractionated radiotherapy. J Radiat Oncol 7:293–305. https://doi.org/10.1007/s13566-018-0367-2

    Article  CAS  Google Scholar 

  83. Milano MT, Sharma M, Soltys SG et al (2018) Radiation-induced edema after single-fraction or multifraction stereotactic radiosurgery for meningioma: a Critical Review. Int J Radiat Oncol Biol Phys 101:344–357. https://doi.org/10.1016/j.ijrobp.2018.03.026

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

A.B.H. and J.H.G. wrote the main manuscript text. All authors contributed equally to preparing figures and reviewing/editing the manuscript.

Corresponding author

Correspondence to Jona A. Hattangadi-Gluth.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopper, A., Salans, M., Karunamuni, R. et al. Neurocognitive considerations in the treatment of meningioma with radiation therapy: applications for quantitative neuroimaging and precision radiation medicine. J Neurooncol 161, 277–286 (2023). https://doi.org/10.1007/s11060-022-04175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04175-5

Keywords

Navigation