Log in

Uptake of lipid core nanoparticles by fragments of tissues collected during cerebral tumor excision surgeries: hypotheses for use in drug targeting therapy

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Malignant cerebral tumors have poor prognosis and the blood–brain barrier is a major hindrance for most drugs to reach those tumors. Lipid nanoparticles (LDE) that bind to lipoprotein receptors may carry anticancer drugs and penetrate the cells through those receptors that are overexpressed in gliomas. The aim was to investigate the in vivo uptake of LDE by human cerebral tumors.

Methods

Twelve consecutive patients (4 with glioblastomas, 1 meduloblastoma, 1 primary lymphoma, 2 with non-cerebral metastases and 4 with benign tumors) scheduled for tumor excision surgery were injected intravenously, 12 h before surgery, with LDE labeled 14C-cholesterol oleate. Fragments of tumors and of normal head tissues (muscle, periosteum, dura mater) discarded by the surgeon were submitted to lipid extraction and radioactive counting.

Results

Tumor LDE uptake (range: 10–283 d.p.m./g of tissue) was not lower than that of normal tissues (range: 20–263 d.p.m./g). Malignant tumor uptake was threefold greater than benign tumor uptake (140 ± 93 vs 46 ± 18 d.p.m./g, p < 0.05). Results show that LDE can concentrate in brain malignant tumors and may be used to carry drugs directed against those tumors.

Conclusion

As LDE was previously shown to markedly decrease drug toxicity this new therapeutic strategy should be tested in future trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008–2012. Neuro Oncol 17 Suppl 4 (Suppl 4):iv1–iv62. https://doi.org/10.1093/neuonc/nov189.

  2. Arvanitis CD, Ferraro GB, Jain RK (2020) The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 20:26–41. https://doi.org/10.1038/s41568-019-0205-x

    Article  CAS  PubMed  Google Scholar 

  3. Maranhão RC, Garicochea B, Silva EL, Llacer PD, Pileggi FJ, Chamone DA (1992) Increased plasma removal of microemulsions resembling the lipid phase of low-density lipoproteins (LDL) in patients with acute myeloid leukemia: a possible new strategy for the treatment of the disease. Braz J Med Biol Res 25:1003–1007

    PubMed  Google Scholar 

  4. Ruan C, Liu L, Lu Y, Zhang Y, He X, Chen X, Zhang Y, Chen Q, Guo Q, Sun T, Jiang C (2018) Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharm Sin B 8(1):85–96. https://doi.org/10.1016/j.apsb.2017.09.008

    Article  PubMed  Google Scholar 

  5. Zhang W, Huang Z, Pu X, Chen X, Yin G, Wang L, Zhang F, Gao F (2020) Fabrication of doxorubicin and chlorotoxin-linked Eu-Gd2O3 nanorods with dual-model imaging and targeted therapy of brain tumor. Chin Chem Lett 31(1):285–291. https://doi.org/10.1016/j.cclet.2019.04.018

    Article  CAS  Google Scholar 

  6. Maranhão RC, Garicochea B, Silva EL, Dorlhiac-Llacer P, Cadena SM, Coelho IJ, Meneghetti JC, Pileggi FJ, Chamone DA (1994) Plasma kinetics and biodistribution of a lipid emulsion resembling low-density lipoprotein in patients with acute leukemia. Cancer Res 54:4660–4666

    PubMed  Google Scholar 

  7. Mahley RW (2017) Apolipoprotein E: remarkable protein sheds light on cardiovascular and neurological diseases. Clin Chem 63:14–20. https://doi.org/10.1373/clinchem.2016.255695

    Article  CAS  PubMed  Google Scholar 

  8. Maranhão RC, Cesar TB, Pedroso-Mariani SR, Hirata MH, Mesquita CH (1993) Metabolic behavior in rats of a nonprotein microemulsion resembling low-density lipoprotein. Lipids 28:691–696. https://doi.org/10.1007/BF02535988

    Article  PubMed  Google Scholar 

  9. Pires LA, Hegg R, Valduga CJ, Graziani SR, Rodrigues DG, Maranhão RC (2009) Use of cholesterol-rich nanoparticles that bind to lipoprotein receptors as a vehicle to paclitaxel in the treatment of breast cancer: pharmacokinetics, tumor uptake and a pilot clinical study. Cancer Chemother Pharmacol 63:281–287. https://doi.org/10.1007/s00280-008-0738-2

    Article  CAS  PubMed  Google Scholar 

  10. Dias MLN, Carvalho JP, Rodrigues DG, Graziani SR, Maranhão RC (2007) Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers. Cancer Chemother Pharmacol 59:105–111. https://doi.org/10.1007/s00280-006-0252-3

    Article  CAS  PubMed  Google Scholar 

  11. Maranhão RC, Graziani SR, Yamaguchi N, Melo RF, Latrilha MC, Rodrigues DG, Couto RD, Schreier S, Buzaid AC (2002) Association of carmustine with a lipid emulsion: in vitro, in vivo and preliminary studies in cancer patients. Cancer Chemother Pharmacol 49:487–498. https://doi.org/10.1007/s00280-002-0437-3

    Article  CAS  PubMed  Google Scholar 

  12. Hungria VT, Latrilha MC, Rodrigues DG, Bydlowski SP, Chiattone CS, Maranhão RC (2004) Metabolism of a cholesterol-rich microemulsion (LDE) in patients with multiple myeloma and a preliminary clinical study of LDE as a drug vehicle for the treatment of the disease. Cancer Chemother Pharmacol 53:51–60. https://doi.org/10.1007/s00280-003-0692-y

    Article  CAS  PubMed  Google Scholar 

  13. Lo Prete AC, Maria DA, Rodrigues DG, Valduga CJ, Ibañez OC, Maranhão RC (2006) Evaluation in melanoma-bearing mice of an etoposide derivative associated to a cholesterol-rich nano-emulsion. J Pharm Pharmacol 58:801–808. https://doi.org/10.1211/jpp.58.6.0010

    Article  CAS  PubMed  Google Scholar 

  14. Pinheiro KV, Hungria VT, Ficker ES, Valduga CJ, Mesquita CH, Maranhão RC (2006) Plasma kinetics of a cholesterol-rich microemulsion (LDE) in patients with Hodgkin’s and non-Hodgkin’s lymphoma and a preliminary study on the toxicity of etoposide associated with LDE. Cancer Chemother Pharmacol 57:624–630. https://doi.org/10.1007/s00280-005-0090-8

    Article  CAS  PubMed  Google Scholar 

  15. Rodrigues DG, Maria DA, Fernandes DC, Valduga CJ, Couto RD, Ibañez OC, Maranhão RC (2005) Improvement of paclitaxel therapeutic index by derivatization and association to a cholesterol-rich microemulsion: in vitro and in vivo studies. Cancer Chemother Pharmacol 55:565–576. https://doi.org/10.1007/s00280-004-0930-y

    Article  CAS  PubMed  Google Scholar 

  16. Graziani SR, Vital CG, Morikawa AT, Van Eyll BM, Fernandes Junior HJ, Kalil Filho R, Maranhão RC (2017) Phase II study of paclitaxel associated with lipid core nanoparticles (LDE) as third-line treatment of patients with epithelial ovarian carcinoma. Med Oncol 34:151. https://doi.org/10.1007/s12032-017-1009-z

    Article  CAS  PubMed  Google Scholar 

  17. Pawar S, Koneru T, McCord E, Tatiparti K, Sau S, Iyer AK (2021) LDL receptors and their role in targeted therapy for glioma: a review. Drug Discov Today 26:1212–1225. https://doi.org/10.1016/j.drudis.2021.02.008

    Article  CAS  PubMed  Google Scholar 

  18. Dehouck B, Dehouck MP, Fruchart JC, Cecchelli R (1994) Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol 126:465–473. https://doi.org/10.1083/jcb.126.2.465

    Article  CAS  PubMed  Google Scholar 

  19. Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R (1997) A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol 138:877–889. https://doi.org/10.1083/jcb.138.4.877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herda LM, Polo E, Kelly PM, Rocks L, Hudecz D, Dawson KA (2014) Designing the future of nanomedicine: current barriers to targeted brain therapeutics. Eur J Nanomed 6:127–139. https://doi.org/10.1515/ejnm-2014-0022

    Article  Google Scholar 

  21. Arcella A, Palchetti S, Digiacomo L, Pozzi D, Capriotti AL, Frati L, Oliva MA, Tsaouli G, Rota R, Screpanti I, Mahmoudi M, Caracciolo G (2018) Brain targeting by liposome-biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells. ACS Chem Neurosci 9:3166–3174. https://doi.org/10.1021/acschemneuro.8b00339

    Article  CAS  PubMed  Google Scholar 

  22. Tashima T (2020) Smart strategies for therapeutic agent delivery into brain across the blood-brain barrier using receptor-mediated transcytosis. Chem Pharm Bull (Tokyo) 68:316–325. https://doi.org/10.1248/cpb.c19-00854

    Article  Google Scholar 

  23. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  Google Scholar 

  24. Vañó E, Rosenstein M, Liniecki J, Rehani MM, Martin CJ, Vetter RJ (2009) ICRP Publication 113. Education and training in radiological protection for diagnostic and interventional procedures. Ann ICRP 39:7–68. https://doi.org/10.1016/j.icrp.2011.01.002

    Article  PubMed  Google Scholar 

  25. Mello SB, Tavares ER, Bulgarelli A, Bonfá E, Maranhão RC (2013) Intra-articular methotrexate associated to lipid nanoemulsions: anti-inflammatory effect upon antigen-induced arthritis. Int J Nanomed 8:443–449. https://doi.org/10.2147/IJN.S29

    Article  Google Scholar 

  26. Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA (2021) Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers 9(3):1904773. https://doi.org/10.1080/21688370.2021.1904773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hersh AM, Alomari S, Tyler BM (2022) Crossing the blood-brain barrier: advances in nanoparticle technology for drug delivery in neuro-oncology. Int J Mol Sci 23(8):4153. https://doi.org/10.3390/ijms23084153.392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun T, Jiang X, Wang Q, Chen Q, Lu Y, Liu L, Zhang Y, He X, Ruan C, Zhang Y, Guo Q, Liu Y, Jiang C (2017) Substance P mediated DGLs complexing with DACHPt for targeting therapy of glioma. ACS Appl Mater Interfaces 9(40):34603–34617. https://doi.org/10.1021/acsami.7b05997

    Article  CAS  PubMed  Google Scholar 

  29. Lu VM, McDonald KL, Townley HE (2017) Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma. Nanomedicine (Lond) 12(19):2389–2401. https://doi.org/10.2217/nnm-2017-0193

    Article  CAS  Google Scholar 

  30. Hwang SR, Kim K (2014) Nano-enabled delivery systems across the blood–brain barrier. Arch Pharm Res 37:24–30. https://doi.org/10.1007/s12272-013-0272-6

    Article  CAS  PubMed  Google Scholar 

  31. Lane-Donovan C, Philips GT, Herz J (2014) More than cholesterol transporters: lipoprotein receptors in CNS function and neurodegeneration. Neuron 83:771–787. https://doi.org/10.1016/j.neuron.2014.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayashi H (2011) Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 34:453–461. https://doi.org/10.1248/bpb.34.453

    Article  CAS  PubMed  Google Scholar 

  33. Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH (1987) Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E (LDL) receptors in the brain. J Biol Chem 262(29):14352–60

    Article  CAS  Google Scholar 

  34. Rudling MJ, Angelin B, Peterson CO, Collins VP (1990) Low-density lipoprotein receptor activity in human intracranial tumors and its relation to the cholesterol requirement. Cancer Res 50(3):483–487

    CAS  PubMed  Google Scholar 

  35. Goldstein JL, Brown MS (2009) The LDL receptor. Arterioscler Thromb Vasc Biol 29:431–438. https://doi.org/10.1161/ATVBAHA.108.179564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK (1988) Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J 7:4119–4127. https://doi.org/10.1002/j.1460-2075.1988.tb03306.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Herz J, Kowal RC, Goldstein JL, Brown MS (1990) Proteolytic processing of the 600 kd low density lipoprotein receptor-related protein (LRP) occurs in a trans-Golgi compartment. EMBO J 9:1769–1776. https://doi.org/10.1002/j.1460-2075.1990.tb08301.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanekiyo T, Bu G (2014) The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease. Front Aging Neurosci 6:93. https://doi.org/10.3389/fnagi.2014.00093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao Y, Li D, Zhao J, Song J, Zhao Y (2016) The role of the low-density lipoprotein receptor–related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Rev Neurosci 27:623–634. https://doi.org/10.1515/revneuro-2015-0069

    Article  CAS  PubMed  Google Scholar 

  40. Calvo D, Vega MA (1993) Identification, primary structure, and distribution of CLA-1, a novel member of the CD36/LIMPII gene family. J Biol Chem 268:18929–18935

    Article  CAS  Google Scholar 

  41. Acton SL, Scherer PE, Lodish HF, Krieger M (1994) Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem 269:21003–21009

    Article  CAS  Google Scholar 

  42. Calvo D, Gomez-Coronado D, Lasuncion MA, Vega MA (1997) CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins. Arterioscler Thromb Vasc Biol 17:2341. https://doi.org/10.1161/01.atv.17.11.2341

    Article  CAS  PubMed  Google Scholar 

  43. Shen WJ, Azhar S, Kraemer FB (2018) SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu Rev Physiol 80:95–116. https://doi.org/10.1146/annurev-physiol-021317-121550

    Article  CAS  PubMed  Google Scholar 

  44. Zheng Y, Liu Y, ** H, Pan S, Qian Y, Huang C, Zeng Y, Luo Q, Zeng M, Zhang Z (2013) Scavenger receptor B1 is a potential biomarker of human nasopharyngeal carcinoma and its growth is inhibited by HDL-mimetic nanoparticles. Theranostics 3:477–486. https://doi.org/10.7150/thno.6617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jia J, **ao Y, Liu J, Zhang W, He H, Chen L, Zhang M (2012) Preparation, characterizations, and in vitro metabolic processes of paclitaxel-loaded discoidal recombinant high-density lipoproteins. J Pharm Sci 101:2900–2908. https://doi.org/10.1002/jps.23210

    Article  CAS  PubMed  Google Scholar 

  46. Foit L, Giles FJ, Gordon LI, Thaxton CS (2015) Synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev Anticancer Ther 15:27–34. https://doi.org/10.1586/14737140.2015.990889

    Article  CAS  PubMed  Google Scholar 

  47. Goodman LS, Brunton LL, Chabner B, Knollmann BC (2011) Goodman & Gilman’s pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  48. Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O’Connell D, Walsh KR, Wood K, Phillips J, Xu Y, Amaral A, Boyd AP, Cehelsky JE, McKee MD, Schiermeier A, Harari O, Murphy A, Kyratsous CA, Zambrowicz B, Soltys R, Gutstein DE, Leonard J, Sepp-Lorenzino L, Lebwohl D (2021) CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 385:493–502. https://doi.org/10.1056/NEJMoa2107454

    Article  CAS  PubMed  Google Scholar 

  49. Tedesco AC, Silva EPO, Jayme CC, Piva HL, Franchi LP (2021) Cholesterol-rich nanoemulsion (LDE) as a novel drug delivery system to diagnose, delineate, and treat human glioblastoma. Mater Sci Eng C 123:111984. https://doi.org/10.1016/j.msec.2021.111984

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the São Paulo Research Support Foundation (FAPESP), National Council for Scientific and Technological Development (CNPq), and the National Institute of Science and Technology Complex Fluids (INCT-FCx). Dr. Maranhão holds an A-1 Research Carrier Award from CNPq.

Funding

This study was supported by the São Paulo Research Support Foundation (FAPESP, grant number 2014/03742–0, Brazil), National Council for Scientific and Technological Development (CNPq, grant 431290/2016–4, Brasilia, Brazil).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and project administration: ELRP and RCM; methodology: DFD, ELRP, and RCM; formal analysis: ELRP and RCM; investigation: ELRP, DCAF, JPLT, and NMM; data curation: ELRP, DCAF, DFD, and RCM; writing—original draft preparation: ERT, CGV, ELRP, and RCM; writing—review and editing: ERT and CGV; supervision and funding acquisition: RCM.

Corresponding author

Correspondence to Raul Cavalcante Maranhão.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was approved by the Ethics Committee of the Federal University of Pará (CAAE 98117312.2.0000.0017). All subjects signed informed consent form in accordance with the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, E.L.R., Feio, D.C.A., Tavares, J.P.L. et al. Uptake of lipid core nanoparticles by fragments of tissues collected during cerebral tumor excision surgeries: hypotheses for use in drug targeting therapy. J Neurooncol 158, 413–421 (2022). https://doi.org/10.1007/s11060-022-04028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04028-1

Keywords

Navigation