Log in

Comparison of the Antiparkinson Activity of Levodopa, Memantine, and Guanidine-Containing Analogs of Amantadine and Memantine (IEM-2151 and IEM-2163) in Rats with Rotenone-Induced Parkinsonism

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Rotenone-induced parkinsonism in rats is a widely used animal model of parkinsonism for studies of the antiparkinsonism activity of new substances. The guanidine derivatives of adamantane 1-adamantylguanidine hydrochloride (IEM-2151) and 3,5-dimethyl-1-adamantylguanidine hydrochloride (IEM-2163) given p.o. at a dose of 10 mg/kg had signifi cantly greater antiparkinsonism effects than levodopa at a dose of 20 mg/kg and memantine at a dose of 5 mg/kg, as they reduced the proportion of rats with severe oligokinesia 1.5–3 times more effectively than memantine and levodopa and, in contrast to memantine and levodopa, completely eliminated severe catalepsy in rats with rotenone-induced parkinsonism. IEM-2151 was the safest substance, as it prevented lethality among rats throughout the experiment, while memantine and levodopa increased lethality among the animals towards the end of the experiment. Combined p.o. administration of levodopa with IEM-2151 at the low doses of 10 and 5 mg/kg, respectively, produced a maximal synergistic antiparkinsonism effect, which was greater than the effects of each drug alone at twice the dose. The combination of IEM-2151 with levodopa at low therapeutic doses is a potentially effective and safe approach to the treatment of levodopa-refractory parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Gmiro and S. E. Serdyuk, “Comparative analysis of the NMDA-blocking activity and safety of monocationic and dicationic compounds in animal experiments,” Eksperim. Klin. Farmakol., 63, No. 6, 3–8 (2000).

    CAS  Google Scholar 

  2. G. A. Grigor’yan and A. S. Bazyan, “Experimental models of Parkinson’s disease in animals,” Usp. Fiziol. Nauk., 38, No. 4, 80–88 (2007).

    Google Scholar 

  3. I. G. Kapitsa, E. A. Ivanova, A. V. Nepoklonov, et al., “The effects of himantane and amantadine on the development of levodopa-induced dyskinesia on a model of Parkinson’s syndrome in rats,” Eksperim. Klin. Farmakol., 74, No. 7, 9–12 (2011).

    CAS  Google Scholar 

  4. O. S. Levin and L. A. Batukaeva, “Effi cacy of memantine in Parkinson’s disease with dementia,” Zh. Nevrol. Psikhiat., 108, No. 12, 16–23 (2008).

    CAS  Google Scholar 

  5. F. A. Ahmadi, T. N. Grammatopoulos, A. M. Poczobutt, et al., “Dopamine selectively sensitizes dopaminergic neurons to rotenone-induced apoptosis,” Neurochem. Res., 33, No. 5, 886–901 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. M. Alam, and W. J. Schmidt, “L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats,” Behav. Brain Res., 153, No. 2, 439–446 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. J. R. Cannon, V. Tapias, H. M. Na, et al., “A highly reproducible rotenone model of Parkinson’s disease,” Neurobiol. Dis., 34, No. 2, 279–290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. W. Danysz, C. G. Parsons, J. Kornhuber, et al., “Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents-preclinical studies,” Neurosci. Biobehav. Rev., 21, No. 4, 455–468 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. S. M. Fleming, C. Zhu, P. O. Fernagut, et al., “Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone,” Exp. Neurol., 187, No. 2, 418–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. T. Hayakawa, Y. Sugimoto, Z. Chen, et al., “Effects of anti-Parkinsonian drugs on neurobehavioural changes induced by bilateral 6-hydroxydopamine lesions in rats,” Clin. Exp. Pharmacol. Physiol., 26, No. 5–6, 421–425 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. M. T. Herrero, J. Pagonabarraga, and G. Linazasoro, “Neuroprotective role of dopamine agonists: evidence from animal models and clinical studies,” Neurologist, 17, No. 6, Suppl. 1, S54–S66 (2011).

    Article  PubMed  Google Scholar 

  12. C. Ikonomidou, V. Stefovska, and L. Turski, “Neuronal death enhanced by N-methyl-D-aspartate antagonists,” Proc. Natl. Acad. Sci. USA, 97, No. 2, 12885–12890 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. C. Kobylecki, M. A. Cenci, A. R. Crossman, and P. Ravenscroft, “Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson’s disease,” J. Neurochem., 114, No. 2, 499–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. C. H. Lin, J. Y. Huang, C. H. Ching, and J. I. Chuang, “Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats,” J. Pineal Res., 44, No. 2, 205–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. G. Losi, M. Lanza, F. Makovec, et al., “Functional in vitro characterization of CR 3394: a novel voltage dependent N-methyl-D-aspartate (NMDA) receptor antagonist,” Neuropharmacology, 50, No. 3, 277–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. K. S. Madathil, S. S. Karuppagounder, R. Haobam, et al., “Nitric oxide synthase inhibitors protect against rotenone-induced, oxidative stress mediated parkinsonism in rats,” Neurochem. Int., 62, No. 5, 674–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. N. B. Mercuri and G. Bernardi, “The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy?” Trends Pharmacol. Sci., 26, No. 7, 341–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. N. Nakao, K. Nakai, and T. Itakura, “Metabolic inhibition enhances selective toxicity of L-DOPA toward mesencephalic dopamine neurons in vitro,” Brain Res., 777, No. 1–2, 202–209 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. G. Rammes, W. Danysz, and C. G. Parsons, “Pharmacodynamics of memantine: an update,” Curr. Neuropharmacol., 6, No. 1, 55–78 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O. Rascol, A. Lozano, M. Stern, and W. Poewe, “Milestones in Parkinson’s disease therapeutics,” Mov. Disord., 26, No. 6, 1072–1082 (2011).

    Article  PubMed  Google Scholar 

  21. N. I. Rukoyatkina, L. V. Gorbunova, V. E. Gmiro, and N. Y. Lukomskaya, “The ability of new non-competitive glutamate receptor blockers to weaken motor disorders in animals,” Neurosci. Behav. Physiol., 33, No. 3, 273–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. W. J. Schmidt and M. Alam, “Controversies on new animal models of Parkinson’s disease pro and con: the rotenone model of Parkinson’s disease (PD),” J. Neural Transm., 70, Supplement, 273–276 (2006).

  23. S. Swarnkar, S. Singh, R. Mathur, et al., “A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular coordination in rats,” Toxicology, 272, No. 1–3, 17–22 (2010).

    Article  CAS  Google Scholar 

  24. Y. N. Wu and S. W. Johnson, “Dopamine oxidation facilitates rotenone-dependent potentiation of N-methyl-D-aspartate currents in rat substantia nigra dopamine neurons,” Neuroscience, 195, 138–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Y. N. Wu, and S. W. Johnson, “Intervention of mitochondrial dysfunction-oxidative stress-dependent apoptosis as a possible neuroprotective mechanism of a-lipoic acid against rotenone-induced parkinsonism and L-dopa toxicity,” Neurosci. Res., 71, No. 4, 387–395 (2011).

    Article  CAS  Google Scholar 

  26. Y. Yang, X. Liu, Y. Long, et al., “Systematic administration of iptakalim, an ATP-sensitive potassium channel opener, prevents rotenoneinduced motor and neurochemical alterations in rats,” J. Neurosci. Res., 80, No. 3, 442–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Yang, X. Liu, Y. Long, et al., “Activation of mitochondrial ATPsensitive potassium channels improves rotenone-related motor and neurochemical alterations in rats,” Int. J. Neuropsychopharmacol., 9, No. 1, 51–61 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Gmiro.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 7, pp. 768–777, July, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gmiro, V.E., Serdyuk, S.E. & Veselkina, O.S. Comparison of the Antiparkinson Activity of Levodopa, Memantine, and Guanidine-Containing Analogs of Amantadine and Memantine (IEM-2151 and IEM-2163) in Rats with Rotenone-Induced Parkinsonism. Neurosci Behav Physi 49, 502–507 (2019). https://doi.org/10.1007/s11055-019-00762-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00762-8

Keywords

Navigation