Log in

The Biosocial Bases of Aggressivity and Aggressive Behavior

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review provides a brief exposition of the biosocial bases of the formation and expression of aggressivity in human society. The main watershed in scientific discussions on the nature of human aggression is the counterpoint of endogenous and environmental determinants in specifying aggressivity as a personality characteristic. Views of world scientific authorities on this problem are discussed with consideration of the contexts on which these views are based. Along with conventional concepts, this review presents new ideas regarding the epigenetic regulation of behavior, including aggressive, which the authors believe provide grounds for decreasing differences between the views of those who regard aggression in humans in the modern world as resulting from social learning or a manifestation of instinct inherited from our distant ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekhina, T. A., Trut, L. N., Plyusnina, I. Z., et al., “Some behavioral and physiological characteristics of the nonagouti mutation in gray rats during breeding for aggressivity,” Zh. Vyssh. Nerv. Deyat., No. 6, 730–738 (2003).

  • Anderson, C. A., Berkowitz, L., Donnerstein, E., et al., “The influence of media violence on youth,” Psychol. Sci. Public Interest, No. 4, 81–110 (2003).

  • Anholt, R. R. H. and Mackay, T. F. C., “Genetics of Aggression,” Annu. Rev. Genet., 46, 145–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Anisman, I. L., Zaharia, M. D., Meaney, M. J., and Merali, Z., “Do early-life events permanently alter behavioral and hormonal responses to stressors?” Int. J. Dev. Neurosci., 16, 149–164 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Arseneault, L., Tremblay, R. E., Boulerice, B., and Saucier, J.-F., “Obstetrical complications and violent delinquency: testing two developmental pathways,” Child Dev., 73, 496–508 (2002), doi: https://doi.org/10.1111/1467-8624.00420.

    Article  PubMed  Google Scholar 

  • Avgustinovich, D. F., Lipina, T. V., Alekseenko, O. V., et al., “Characteristics of the functional activity of the serotoninergic system of the brain in the manifestation of natural and pathological anxiety in mice: genotype effects,” Zh. Vyssh. Nerv. Deyat., 48, No. 2, 331–341 (1998).

    CAS  Google Scholar 

  • Avgustinovich, D. F., Lipina, T. V., Bondar’, N. P., and Kudryavtseva, N. N., “Characteristics of the manifestations of inherited anxiety in male CBA/Lac and C57BL/6J mice,” Zh. Vyssh. Nerv. Deyat., 49, No. 6, 1008–1017 (1999).

    CAS  Google Scholar 

  • Bandura, A., “Social learning theory of aggression,” J. Communic., 28, No. 3, 12–29 (1978).

    CAS  Google Scholar 

  • Bandura, A., Aggression: A Social Learning Analysis, Holt, New York (1973).

    Google Scholar 

  • Barr, C. S., Newman, T. K., Becker, M. L., et al., “Serotonin transporter gene variation is associated with alcohol sensitivity in rhesus macaques exposed to early-life stress,” Alcohol Clin. Exp. Res., 27, 812–817 (2003b).

    Article  CAS  PubMed  Google Scholar 

  • Barr, C. S., Newman, T. K., Becker, M. L., et al., “The utility of the non-human primate; model for studying gene by environment interactions in behavioral research,” Genes Brain Behav., 2, No. 6, 336–340 (2003a).

    Article  CAS  PubMed  Google Scholar 

  • Barr, C. S., Newman, T. K., Schwandt, M., et al., “Sexual dichotomy of an interaction between early adversity and the serotonin transporter gene promoter variant in rhesus macaques,” Proc. Natl. Acad. Sci. USA, 101, 12,358–12,363 (2004b).

  • Barr, C. S., Newman, T. K., Shannon, C., et al., “Rearing condition and 5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques,” Biol. Psychiatry, 55, 733–738 (2004a).

    Article  CAS  PubMed  Google Scholar 

  • Beach, S. R., Brody, G. H., Todorov, A. A., et al., “Methylation at 5HTT mediates the impact of child sex abuse on women’s antisocial behavior: an examination of the Iowa adoptee sample,” Psychosom. Med., 73, 83–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Beiderbeck, D. I., Neumann, L. D., and Veenema, A. H., “Differences in intermale aggression are accompanied by opposite vasopressin release patterns within the septum in rats bred for low and high anxiety,” Eur. J. Neurosci., 26, 3597–3605 (2007).

    Article  PubMed  Google Scholar 

  • Bennett, A. J., Lesch, K. P., Hells, A., et al., “Early experience and serotonin transporter gene variation interact to influence primate CNS function,” Mol. Psychiatry, 7, 118–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz, L., Aggression: A Social Psychological Analysis, McGraw-Hill, New York (1962).

    Google Scholar 

  • Boivin, M., Vitaro, F., and Poulin, F., “Peer relationships and the development of aggressive behavior in early childhood,” in: Developmental Origins of Aggression, Tremblay, R. E. et al. (eds.), Guilford Publications, New York (2005).

    Google Scholar 

  • Booij, L., Benkelfat, C., Leyton, M., et al., “Perinatal effects on in vivo measures of human brain serotonin synthesis in adulthood: a 27-year longitudinal study,” Eur. Neuropsychopharmacol., 22, 419–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Booij, L., Tremblay, R. E., Szyf, M., and Benkelfat, C., “Genetic and early environmental influences on the serotonin system: consequences for brain development and risk for psychopathology,” J. Psychiatry Neurosci., 40, No. 1, 5–18 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Borghol, N., Suderman, M., McArdle, W., et al., “Associations with early-life socioeconomic position in adult DNA methylation,” Int. J. Epidemiol., 41, 62–74 (2012).

    Article  PubMed  Google Scholar 

  • Byrne, R. W. and Bates, L. A., “Sociality, evolution and cognition,” Curr. Biol., 17, R714–R723 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Caldji, C., Tannenbaum, B., Sharma, S., et al., “Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat,” Proc. Natl. Acad. Sci. USA, 95, 5335–5340 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi, A., McClay, J., Moffitt, T. E., et al., “Role of genotype in the cycle of violence in maltreated children,” Science, 297, 851–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Caspi, A., Sugden, K. Moffitt, T. E., et al., “Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene,” Science, 301, 386–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Craig, I. W. and Halton, K. E., “Genetics of human aggressive behaviour,” Hum. Genet., 126, 101–113 (2009).

    Article  PubMed  Google Scholar 

  • Craig, I. W., “The importance of stress and genetic variation in human aggression,” Bioessays, 29, 227–236 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Crews, D., “Epigenetics, brain, behavior, and the environment,” Hormones, 9, No. 1, 41–50 (2010).

    Article  PubMed  Google Scholar 

  • Curley, J. P., Jensen, C. L., Mashoodh, R., and Champagne, F. A., “Social influences on neurobiology and behavior: Epigenetic effects during development,” Psychoneuroendocrinology, 36, 352–371 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Denenberg, V. H., “Critical periods, stimulus input, and emotional activity: A theory of infantile stimulation,” Psychol. Rev., 71, No. 8, 335–351 (1964).

    Article  CAS  PubMed  Google Scholar 

  • Dias, B. G. and Ressler, K. J., “Parental olfactory experience influences behavior and neural structure in subsequent generations,” Nat. Neurosci., 17, 89–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Dionne, G., “Language development and aggressive behavior,” in: Developmental Origins of Aggression, Tremblay, R. E. et al. (eds.), Guilford Publ., New York (2005).

    Google Scholar 

  • El Khoury, A., Gruber, S. H., Mork, A., and Mathe, A. A., “Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 30, 535–540 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Elliott, E., Ezra-Nevo, G., Regev, L., et al., “Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice,” Nat. Neurosci., 13, 1351–1353 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Essex, M. J., Thomas Boyce, W., Hertzman, C., et al., “Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence,” Child Dev., 84, 58–75 (2013).

    Article  PubMed  Google Scholar 

  • Eysenck, H. J., “The biosocial nature of man,” J. Social Biol. Struct., 3, 125–134 (1980).

    Article  Google Scholar 

  • Ferris, C. F., Lu, S. F., Messenger, T., et al., “Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior,” Pharmacol. Biochem. Behav., 83, 169–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Foley, D. L., Eaves, L. J., Wormley, B., et al., “Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder,” Arch. Gen. Psychiatry, 61, 738–744 (2004), doi: https://doi.org/10.1001/archpsyc.61.7.738 (2004).

  • Franklin, T. B., Russig, H., Weiss, I. C., et al., “Epigenetic transmission of the impact of early stress across generations,” Biol. Psychiatry, 68, 408–415 (2010).

    Article  PubMed  Google Scholar 

  • Freud, S., Civilization and Its Discontents, Hogarth, London (1930).

    Google Scholar 

  • Frith, C. D. and Frith, U., “Social cognition in humans. Open archive, review article,” Curr. Biol., 17, R724–R732 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Fromm, E., The Anatomy of Human Destructiveness, Holt, Rinehart and Winston, New York, Chicago, San Francisco (1973).

    Google Scholar 

  • Gatti, U. and Tremblay, R. E., “Social capital and physical violence,” in: Developmental Origins of Aggression, Tremblay, R. E. et al. (eds.), Guilford Publ., New York (2005).

    Google Scholar 

  • Granberg, D. O. and Galliher, J. F., A Most Human Enterprise: Controversies in the Social Sciences, Lexington Books, New York, Toronto, Plymouth (2010).

    Google Scholar 

  • Guo, G., Roettger, M. E., and Shih, J. C., “Contributions of the DAT1 and DRD2 genes to serious and violent delinquency among adolescents and young adults,” Hum. Genet., 121, 125–136 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Huesmann, L. R., Aggressive Behavior: Current Perspectives, Plenum Press, New York, London (1994).

    Book  Google Scholar 

  • Huijbregts, S. C., Seguin, J. R., Zoccolillo, M., et al., “Maternal prenatal smoking, parental antisocial behavior and early childhood physical aggression,” Dev. Psychopathol., 20, 437–453 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, D., “Human behaviour: Killer instincts,” Nature, 451, 512–515 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., et al., “Genetic and environmental predictors of early alcohol use,” Biol. Psychiatry, 61, 1228–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., et al., “Social supports and serotonin transporter gene moderate depression in maltreated children,” Proc. Natl. Acad. Sci. USA, 101, 17,316–17,321 (2004).

  • Keverne, E. B. and Curley, J. P., “Epigenetics, brain evolution and behavior,” Front. Neuroendocrinology, 29, 398–412 (2008).

    Article  CAS  Google Scholar 

  • Kim-Cohen, J., Caspi, A., Taylor, A., et al., “MAOA, maltreatment and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis,” Mol. Psychiatry, 11, 903–913 (2006), doi: https://doi.org/10.1038/sj.mp.4001851.

    Article  CAS  PubMed  Google Scholar 

  • Koller, G., Preuss, U. W., Bottlender, M., et al., “Impulsivity and aggression as predictors of suicide attempts in alcoholics,” Eur. Arch. Psychiatry Clin. Neurosci., 252, 155–160 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kozhemyakina, R. V., Konoshenko M. Yu. Sakharov, D. G., et al., “Comparative analysis of behavior in the open field test in wild gray rats (Rattus norvegicus) and gray rats subjected to prolonged breeding for tolerant and aggressive behavior,” Zh. Vyssh. Nerv. Deyat., 66, No. 1, 92–102 (2016).

    CAS  Google Scholar 

  • Kudryavtseva, N. N., Markel’, A. L., and Orlov, Yu. L., “Aggressive behavior: genetic-physiological mechanisms,” Vavilov Zh. Genet. Selek., 18, No. 4/3, 1133–1155 (2014).

    Google Scholar 

  • Labonté, B., Suderman, M., Maussion, G., et al., “Genome-wide epigenetic regulation by early-life trauma,” Arch. Gen. Psychiatry, 69, 722–731 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesch, K. R., Bengel, D., Heils, A., et al., “Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region,” Science, 274, 1527–1531 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Levine, S. and Mullins, R. F., “Hormonal influences on brain organization in infant rats,” Science, 152, No. 3729, 1585–1592 (1966).

    Article  CAS  PubMed  Google Scholar 

  • Levinson, D. F., “The genetics of depression: a review,” Biol. Psychiatry, 60, 84–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Diorio, I. Tannenbaum, B., et al., “Maternal care, hippocampal glucocorticoid receptors and hypothalamic-pituitary-adrenal responses to stress,” Science, 277, 1659–1662 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, K., On Aggression (so-called evil) [Translated from German], Progress Publishing Group, Univers (1994).

  • Lorenz, K., On Aggression, Routledge, London, New York (2002).

    Google Scholar 

  • Lorenz, K., Über tierisches and menschliches Verhalten, R. Piper & Co Verlag, Munich (1965).

    Google Scholar 

  • Malki, K. Pain O, Du Rietz, E., et al., “Genes and gene networks implicated in aggression related behaviour,” Neurogenetics, 15, 255–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Márquez, C., Poirier, G. L., Cordero, M. I., et al., “Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression,” Transl. Psychiatry, 3, e216 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • McGowan, P. O., Sasaki, A., D’Alessio, A. C., et al., “Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse,” Nat. Neurosci., 12, 342–348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medawar, P. B. and Medawar, J. S., Aristotle to Zoos, Harvard University Press, Cambridge, MA (1983).

    Google Scholar 

  • Mill, I. and Petronis, A., “Pre- and peri-natal environmental risks for attention deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility,” J. Child Psychol. Psychiatry, 49, 1020–1030 (2008).

    Article  PubMed  Google Scholar 

  • Montagu, A., “The new litany of ‘innate depravity,’ or original sin revisited,” in: Man and Aggression, Montagu,. A. (ed.) University Press, Oxford, New York (1968), pp. 3–17.

  • Montagu, A., The Biosocial Nature of Man, Grove Press, New York (1956).

    Book  Google Scholar 

  • Nelson, R. J. and Trainor, B. C., “Neural mechanisms of aggression,” Nat. Rev. Neurosci. 8, 536–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Newman, T. K., Syagailo, Y. V, Barr, C. S., et al., “Monoamine oxidase-A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys,” Biol. Psychiatry, 57, 167–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Paulus, M. P., Varty, G. B., and Geyer, M. A., “The genetic liability to stress and postweaning isolation have a competitive influence on behavioral organization in rats,” Physiol. Behav., 68, 389–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Pavlov, K. A., Chistiakov, D. A., and Chekhonin, V. P., “Genetic determinants of aggression and impulsivity in humans,” J. Appl. Genet., 53, 61–82 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Pihl, R. O. and Benkelfat, C., “Neuromodulators in the development and expression of inhibition and aggression,” in: Developmental Origins of Aggression, Tremblay, R. E. et al. (eds.) Guilford Publ., New York (2005).

    Google Scholar 

  • Quatrefages, A., “Débats du 16 juillet 1863 de la Société d’Anthropologie de Paris,” Bull. Mem. Soc. Anthropol. Paris, 4, 378–383 (1863).

    Google Scholar 

  • Raine, A., Brennan, P., and Mednick, S. A., “Interaction between birth complications and early maternal rejection in predisposing individuals to adult violence: specificity to serious, early-onset violence,” Am. J. Psychiatry, 154, 1265–1271 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Reiss, A. J. and Roth, J. A. (eds.), Understanding and Preventing Violence, National Academy Press, Washington, D.C. (1993).

    Google Scholar 

  • Roth, G. and Dicke, U., “Evolution of the brain and intelligence. Review article,” Trends Cogn. Sci., 9, 250–257 (2005).

    Article  PubMed  Google Scholar 

  • Roth, T. L., Lubin, F. D., Funk, A. J., and Sweatt, J. D., “Lasting epigenetic influence of early-life adversity on the BDNF gene,” Biol. Psychiatry, 65, 760–769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau, J.-J., On the Social Contract, Dover Publ., Inc., Mineola, New York (2003).

    Google Scholar 

  • Roy, A., Hu, X. Z., Janal, M. N., and Goldman, D., “Interaction between childhood trauma and serotonin transporter gene variation in suicide,” Neuropsychopharmacology, 32, 2046–2052 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Scott, J. P., “Critical periods in behavioral development,” Science, 138, No. 3544, 949–964 (1962).

    Article  CAS  PubMed  Google Scholar 

  • Scott, J. P., “Critical periods in development of social behavior in puppies,” Psychosom. Med., 20, No. 1, 42–54 (1958).

    Article  CAS  PubMed  Google Scholar 

  • Scott, J. P., “Theoretical issues concerning the origin and causes of fighting,” in: The Physiology of Aggression and Defeat, Eleftheriou, B. E. and Scott, J. P. (eds.), Plenum Press, New York (1971).

    Google Scholar 

  • Seguin, J. R. and Zelazo, P., “Executive function in early physical aggression,” in: Developmental Origins of Aggression, Tremblay, R. E. et al. (eds.), Guilford Publ., New York (2005).

    Google Scholar 

  • Skinner, B. F., “Selection by consequences,” Science, 213, No. 4507, 501–504 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Spinelli, S., Schwandt, M. L., Lindell, S. G., et al., “Association between the recombinant human serotonin transporter linked promoter region polymorphism and behavior in rhesus macaques during a separation paradigm,” Dev. Psychopathol., 19, 977–987 (2007).

    Article  PubMed  Google Scholar 

  • Szyf, M., “The early life social environment and DNA methylation,” Epigenetics, 6, No. 8, 971–978 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomassin, H., Flavin, M., Espinás, M. L., and Grange, T., “Glucocorticoid-induced DNA demethylation and gene memory during development,” EMBO J., 20, 1974–1983 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth, M., Halasz, J. Mikics, E., et al., “Social deprivation from weaning induces disturbed social communication and violent aggression in adulthood,” Behav. Neurosci., 122, 849–854 (2008).

    Article  PubMed  Google Scholar 

  • Tremblay, R. E. and Szyf, M., “Developmental origins of chronic physical aggression and epigenetics,” Epigenomics, 2, 495–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Tremblay, R. E., “Anger and aggression,” in: Encyclopedia of Infant and Early Childhood Development, Haith, M. M. and Benson, J. B. (eds.), Academic Press, Oxford (2008), pp. 62–74.

    Chapter  Google Scholar 

  • Tremblay, R. E., “Developmental origins of disruptive behavior problems: the ‘original sin’ hypothesis, epigenetics and their consequences for prevention,” J. Child Psychol. Psychiatry, 51, 341–367 (2010).

    Article  PubMed  Google Scholar 

  • Tremblay, R. E., “The development of aggressive behaviour during childhood: what have we learned in the past century?” Int. J. Behav. Dev., 24, 129–141 (2000).

    Article  Google Scholar 

  • Tsankova, N., Renthal, W. Kumar, A., and Nestler, E. J., “Epigenetic regulation in psychiatric disorders,” Nat. Rev. Neurosci., 8, 355–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Våge, J., Wade, C., Biagi, T., et al., “Association of dopamine- and serotonin-related genes with canine aggression,” Genes Brain Behav., 9, 372–378 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Van Goozen S. H. M., “Hormones and the developmental origin of aggression, in: Developmental Origins of Aggression, Tremblay, R. E. et al. (eds.) Guilford Publ., New York (2005).

    Google Scholar 

  • Vaughn, M., DeLisi, M., Beaver, K., and Wright, J., “DAT1 and 5HTT are associated with pathological criminal behavior in a nationally representative sample of youth,” Crim. Justice Behav., 36, 1113–1124 (2009).

    Article  Google Scholar 

  • Veenema, A. H. and Neumann, L. D., “Neurobiological mechanisms of aggression and stress co**: a comparative study in mouse and rat selection lines,” Brain Behan. Evol., 70, 274–285 (2007).

    Article  Google Scholar 

  • Veenema, A. H., Torner, L., Blume, A., et al., “Low inborn anxiety correlates with high intermale aggression: link to ACTH response and neuronal activation of the hypothalamic paraventricular nucleus,” Horm. Behav., 51, 11–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Waddington, C. H., “The canalisation of development and the inheritance of acquired characteristics,” Nature, 150, 563–565 (1942).

    Article  Google Scholar 

  • Waddington, C. H., The Strategy of the Genes, George Allen & Unwin, London (1957).

    Google Scholar 

  • Wakschlag, L. S., Pickett, K. E., Kasza, K. E., and Loeber, R., “Is prenatal smoking associated with a developmental pattern of conduct problems in young boys?” J. Am. Acad. Child Adolesc. Psychiatry, 45, 461–467 (2006).

    Article  PubMed  Google Scholar 

  • Wang, D., Suf, M., Benkelfat, C., et al., “Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression,” PLoS One, 7, No. 6, 1–8 (2012).

    Article  Google Scholar 

  • Weaver, I. C., Cervoni, N., Champagne, F. A., et al., “Epigenetic programming by maternal behavior,” Nat. Neurosci., 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Weaver, L. C., Champagne, E. A., Brown, S. E., et al., “Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life,” J. Neurosci., 25, 11045–11054 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Weder, N., Yang, B. Z., Douglas-Palumberi, H., et al., “MAOA genotype, maltreatment and aggressive behavior: the changing impact of genotype at varying levels of trauma,” Biol. Psychiatry, 65, 417–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Widom, C. and Brzustowicz, L., “MAOA and the ‘Cycle of Violence:’ childhood abuse and neglect, MAOA genotype and risk for violent and antisocial behavior,” Biol. Psychiatry, 60, 684–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization, World Report on Violence and Health, Krug, E. G., Dahlberg et al. (eds.), WHO, Geneva, Switzerland (2002).

  • Young, S. E., Smolen, A., Hewitt, J. K., et al., “Interaction between MAO-A genotype and maltreatment in the risk for conduct disorder: failure to confirm in adolescent patients,” Am. J. Psychiatry, 163, 1019–1025 (2006).

    Article  PubMed  Google Scholar 

  • Zaharia, M. D., Kulczycki, J., Shanks, N., et al., “The effects of early postnatal stimulation on Morris water-maze acquisition in adult mice: genetic and maternal factors,” Psychopharmacology (Berlin), 128, 227–239 (1996).

    Article  CAS  Google Scholar 

  • Zhang, T. Y., Hellstrom, I. C., Bagot, R. C., et al., “Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus,” J. Neurosci., 30, 13130–13137 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Zoccolillo, M., Paquette, D., and Tremblay, R. E. M., “Maternal conduct disorder and the risk for the next generation,” in: Development and Treatment of Girlhood Aggression, Pepler, D. et al. (eds.), Lawrence Erlbaum Associates, Mahwah, NJ (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Markel’.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 66, No. 6, pp. 669–681, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markel’, A.L. The Biosocial Bases of Aggressivity and Aggressive Behavior. Neurosci Behav Physi 48, 251–260 (2018). https://doi.org/10.1007/s11055-018-0558-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0558-8

Keywords

Navigation