Log in

The Role of AGRP in Regulating Dopaminergic Neurons in the Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Immunoreactive processes containing agouti-regulated protein (AGRP) were detected in various dopaminergic structures in the brains of rats and mice. Double immunolabeling demonstrated the presence of AGRP-immunoreactive processes around the bodies of dopaminergic neurons. In in vitro experiments, incubation of brain tissue from the ventral tegmental area and hypothalamus with AGRP(83-132) identified significant reductions in the optical density of tyrosine hydroxylase. These data provide evidence of the possible direct inhibitory effect of AGRP on the level of tyrosine hydroxylase in dopaminergic neurons and of its role as a modulator of the functional activity of dopaminergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Bazhan, E. N. Makarova, A. Yu. Shevchenko. And T. V. Yakovleva, “Repeated emotional stress prevents the development of melanocortin obesity and type 2 diabetes in mice with the Agouti yellow mutation,” Ros. Fiziol. Zh., 93, No. 11, 560–566 (2007).

    Google Scholar 

  2. E. N. Makarova, A. Yu. Shevchenko, T. V. Yakovleva, and N. M. Bazhan, “Pregnancy and lactation prevent the development of melanocortin obesity syndrome in mice with the Agouti yellow mutation,” Dokl. Adak. Nauk., 407, No. 3, 426–429 (2006).

    Google Scholar 

  3. G. A. Oganesyan, E. A. Aristakesyan, I. V. Romanova, et al., “The dopaminergic nigrostriatal system in conditions of sleep deprivation in rats,” Ros. Fiziol. Zh., 93, No. 12, 1344–1354 (2007).

    CAS  Google Scholar 

  4. I. V. Romanova, “Morphofunctional interaction of CART peptide and dopaminergic neurons in the brain,” Zh. Evolyuts. Biokhim. Fiziol., 49, No. 1, 78–84 (2013).

    CAS  Google Scholar 

  5. M. V. Ugryumov, Mechanisms of Neuroendocrine Regulation, Nauka, Moscow (1999).

    Google Scholar 

  6. A. R. Heryet and K. S. Gatter, “Immunocytochemistry: light microscopy,” in: Molecular Clinical Diagnosis. Methods [Russian translation], Mir, Moscow (1999), pp. 20-65.

  7. D. Bagnol, X. Y. Lu, C. B. Kaelin, et al., “Anatomy of an endogenous antagonist: relationship between agouti-related protein and proopiomelanocortin in brain,” J. Neurosci., 19, 1–7 (1999).

    Google Scholar 

  8. N. Ben-Jonathan, M. A. Neill, L. A. Arbogast, et al., “Dopamine in hypophyseal portal blood: relationship to circulating prolactin in pregnant and lactating rats,” Endocrinology, 106, 690–696 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding,” Anal. Biochem., 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. C. Charbonneau, F. Bai, B. S. Richards, and G. Argyropoulos, “Central and peripheral interactions between the agouti-related protein and leptin,” Biochem. Biophys. Res. Commun., 319, No. 2, 518–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. A. P. Goldstone, U. A. Unmehopa, S. R. Bloom, and D. F. Swaab, “Hypothalamic NPY and agouti-related protein are increased in human illness but not in Prader-Willi syndrome and other obese subjects,” J. Clin. Endocrinol. Metab., 87, No. 2, 927–937 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. K. Goto, A. Inui, Y. Takimoto, et al., “Acute intracerebroventricular administration of carboxyl-terminal fragments of agouti-related peptide produces a long-term decrease in energy expenditure in rats,” Int. J. Mol. Med., 12, 379–383 (2003).

    CAS  PubMed  Google Scholar 

  13. C. Haskell-Luevano, P. Chen, C. Li, et al., “Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the rat,” Endocrinology, 130, No. 3, 1408–1415 (1999).

    Google Scholar 

  14. P. Jourdain, B. Dupouy, R. Bonhomme, et al., “Visualization of local afferent inputs to magnocellular oxytocin neurons in vitro,” Eur. J. Neurosci., 11, 1960–1972 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, 227, No. 5259, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. E. N. Makarova, T. V. Yakovleva, and A. Y. Shevchenko, “Pregnancy and lactation have antiobesity and anti-diabetic effects in Ay/a mice,” Acta Physiologica, 198, No. 2, 169–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. M. M. Ollman, B. D. Wilson,Y. K. Yang, et al., “Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein,” Science, 278, 135–138 (1997).

    Article  Google Scholar 

  18. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (1998), ISBN 0-12-547617-5.

    Google Scholar 

  19. G. T. Paxinos and K. B. J. Franklin, The Mouse Brain in Stereotaxic Coordinates, Academic Press, San Diego (2001), 2nd ed.

    Google Scholar 

  20. L. E. Pritchard and A. White, “Agouti-related protein: More than a melanocortin-4 receptor antagonist?” Peptides, 26, 1759–1770 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. V. Tolle and M. J. Low, “In vivo evidence for inverse agonism of agouti-related peptide in the central nervous system of proopiomelanocortin- deficient mice,” Diabetes, 57, No. 1, 86–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Y. K. Yang, M. Ollmann, B. Wilson, et al., “Effects of recombinant agouti-signaling protein on melanocortin action,” Mol. Endocrinol., 11, 274–280 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Romanova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 9, pp. 1036–1044, September, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhrina, A.L., Romanova, I.V. The Role of AGRP in Regulating Dopaminergic Neurons in the Brain. Neurosci Behav Physi 45, 536–541 (2015). https://doi.org/10.1007/s11055-015-0107-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0107-7

Keywords

Navigation