Log in

Non-Gaussian Copula Simulation for Estimation of Recoverable Reserve in an Indian Copper Deposit

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The present study developed a geostatistical simulation technique based on non-Gaussian copula for recoverable reserve estimation considering support effect of a well-known open-pit mine of a copper deposit in India. The focus was to examine the efficacy of copula-based simulation model in recoverable reserve estimation. It was assessed by comparing three selectivity curves like grade–ore tonnage, grade–metal tonnage and ore–metal tonnage of reserve constructed using the copula-based simulation, disjunctive kriging and multi-Gaussian kriging with respect to the production data of blasting. The results informed that the copula-based simulation technique provided better accuracy than the nonlinear geostatistical techniques of disjunctive kriging and multi-Gaussian kriging. The root mean square error and standard error analysis indicated that the copula-based simulation model provided more accurate estimates compared with disjunctive kriging and multi-Gaussian kriging. All the three techniques yielded biased estimates, but the least bias was attributed to the copula-based simulation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Badel, M., Angorani, S., & Panahi, M. S. (2011). The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Computers & Geosciences, 37(4), 530–540.

    Article  Google Scholar 

  • Bárdossy, A. (2006). Copula-based geostatistical models for groundwater quality parameters. Water Resources Research, 42(11), 11416.

    Article  Google Scholar 

  • Bárdossy, A., & Li, J. (2008). Geostatistical interpolation using copulas. Water Resources Research, 44(7), 07412.

    Article  Google Scholar 

  • Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., & Roncalli, T. (2000). Copulas for finance-a reading guide and some applications. Available at SSRN 1032533.

  • Chiles, J. P., & Delfiner, P. (1999). Geostatistics modeling spatial uncertainty. Wiley series in probability and statistics. New York: John Wiley Sons. Inc.

    Google Scholar 

  • Cressie, N. (1985). Fitting variogram models by weighted least squares. Journal of the International Association for Mathematical Geology, 17(5), 563–586.

    Article  Google Scholar 

  • Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. Risk Management: Value at Risk and Beyond, 1, 176–223.

    Article  Google Scholar 

  • Emery, X. (2002). Conditional simulation of nongaussian random functions. Mathematical Geology, 34(1), 79–100.

    Article  Google Scholar 

  • Emery, X., & Torres, J. F. S. (2005). Models for support and information effects: A comparative study. Mathematical Geology, 37(1), 49–68.

    Article  Google Scholar 

  • Genest, C., & Favre, A. C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347–368.

    Article  Google Scholar 

  • Genest, C., & MacKay, R. J. (1986). Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données. Canadian Journal of Statistics, 14(2), 145–159.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford: Oxford University Press.

    Google Scholar 

  • Huijbregts, C. J. (1971). Universal kriging. In Proceedings of the International Symposium on Techniques for Decision-Making in Mineral Industry, 1971 (pp. 159–169).

  • Joe, H. (1997). Multivariate models and multivariate dependence concepts. London: Chapman & Hall.

    Book  Google Scholar 

  • Joe, H., & Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models.

  • Journel, A. G. (1974). Geostatistics for conditional simulation of ore bodies. Economic Geology, 69(5), 673–687.

    Article  Google Scholar 

  • Journel, A. G. (1983). Nonparametric estimation of spatial distributions. Journal of the International Association for Mathematical Geology, 15(3), 445–468.

    Article  Google Scholar 

  • Journel, A. G., & Huijbregts, C. J. (1978). Mining Geostatistics (Vol. 600). London: Academic press.

    Google Scholar 

  • Kazianka, H., & Pilz, J. (2011). Bayesian spatial modeling and interpolation using copulas. Computers & Geosciences, 37(3), 310–319.

    Article  Google Scholar 

  • Keogh, A., & Moulton, C. (1998). Median indicator kriging—a case study in iron ore. In Proceedings of a one day symposium: Beyond Ordinary Kriging (pp. 106–120).

  • Kotz, S., Balakrishnan, N., & Johnson, N. L. (2004). Continuous multivariate distributions, Volume 1: Models and applications. New York: John Wiley & Sons. Inc.

    Book  Google Scholar 

  • Li, D. X. (2000). On default correlation: A copula function approach. The Journal of Fixed Income, 9(4), 43–54.

    Article  Google Scholar 

  • Marchant, B. P., Saby, N. P. A., Jolivet, C. C., Arrouays, D., & Lark, R. M. (2011). Spatial prediction of soil properties with copulas. Geoderma, 162(3–4), 327–334.

    Article  Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266.

    Article  Google Scholar 

  • Matheron, G. (1976b). A simple substitute for conditional expectation: the disjunctive kriging. In Advanced geostatistics in the mining industry (pp. 221–236). Springer, Dordrecht.

  • Mejía, J. M., & Rodríguez-Iturbe, I. (1974). On the synthesis of random field sampling from the spectrum: An application to the generation of hydrologic spatial processes. Water Resources Research, 10(4), 705–711.

    Article  Google Scholar 

  • Melchiori, M. R. (2003). Which Archimedean copula is the right one? YieldCurve, October.

  • Musafer, G. N., Thompson, M. H., Kozan, E., & Wolff, R. C. (2013). Copula-based spatial modelling of geometallurgical variables. In Proceedings of the second AusIMM international geometallurgy conference (pp. 239–246). The Australasian Institute of Mining and Metallurgy (AusIMM).

  • Musafer, G. N., Thompson, M. H., Kozan, E., & Wolff, R. C. (2017). Spatial pair-copula modeling of grade in ore bodies: A case study. Natural Resources Research, 26(2), 223–236.

    Article  Google Scholar 

  • Nelsen, R. B. (1999). An introduction to copulas. New York: Springer.

    Book  Google Scholar 

  • Nowak, M., & Verly, G. (2005). The practice of sequential Gaussian simulation. Geostatistics Banff 2004 (pp. 387–398). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ravenscroft, P. J. (1992). Recoverable reserve estimation by conditional simulation. Geological Society, London, Special Publications, 63(1), 289–298.

    Article  Google Scholar 

  • Rivoirard, J. (1989). Models with orthogonal indicator residuals. Geostatistics (pp. 91–107). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Rivoirard, J. (1994). Introduction to disjunctive kriging and non-linear geostatistics (No. 551.021 R626i). Clarendon Press.

  • Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). Extremes in nature: an approach using copulas (Vol. 56). Netherlands: Springer.

    Book  Google Scholar 

  • Sklar, A., Sklar, A., & Sklar, C. A. (1959). Fonctions de reprtition an dimensions et leursmarges.

  • Thakur, M., Samanta, B., & Chakravarty, D. (2014). Support and information effect modeling for recoverable reserve estimation of a beach sand deposit in India. Natural Resources Research, 23(2), 231–245.

    Article  Google Scholar 

  • Thakur, M., Samanta, B., & Chakravarty, D. (2018). A non-stationary geostatistical approach to multigaussian kriging for local reserve estimation. Stochastic Environmental Research and Risk Assessment, 32(8), 2381–2404.

    Article  Google Scholar 

  • Verly, G. (1983). The multigaussian approach and its applications to the estimation of local reserves. Journal of the International Association for Mathematical Geology, 15(2), 259–286.

    Article  Google Scholar 

  • Verly, G., & Sullivan, J. (1985). Multigaussian and probability krigings-application to the Jerritt Canyon deposit. Mining Engineering, 37(6), 568–574.

    Google Scholar 

Download references

Acknowledgments

This work is carried out under the funded project of Ministry of Mines, India. Both the authors gratefully acknowledge this funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinda, K., Samanta, B. Non-Gaussian Copula Simulation for Estimation of Recoverable Reserve in an Indian Copper Deposit. Nat Resour Res 30, 57–76 (2021). https://doi.org/10.1007/s11053-020-09734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09734-z

Keywords

Navigation