Log in

Drug Encapsulation: Review of Niosomes for Promoting Antimicrobial Activity

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanotechnology has been used for drug encapsulation with the development of more effective and less toxic nanomedicines. Some currently used antimicrobials present problems with their physicochemical characteristics and the emergence of resistant microorganisms. Thus, encapsulating these drugs in nanocarriers would be a promising alternative to overcome these problems. This systematic review aims to evaluate the development of niosomes for encapsulation of antimicrobials, highlighting studies with in vitro and in vivo research. A search was performed in the MEDLINE/PubMed and Web of Science databases from 2011 to May 2021 with an exclusion, eligibility, and classification criteria. Twenty articles were selected to write this review. It was observed that the niosomes produced presented differences in physicochemical characteristics according to the non-ionic surfactant used. The evaluation of cell and animal assays revealed that niosomes presented a significantly higher antimicrobial efficacy when compared to the free drug. A reduction in toxicity could also be observed. Thus, the development of niosome-based nanomedicines has progressed over the years and is a promising strategy to increase therapeutic efficacy and reduce drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Cavalcanti IDL, Nogueira MCBL (2020) Pharmaceutical nanotechnology: which products are been designed against COVID-19? J Nanopart Res 22(9):276. https://doi.org/10.1007/s11051-020-05010-6

    Article  CAS  Google Scholar 

  2. Hashemi, B. et al. 2021. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol. 102967. https://doi.org/10.1016/j.jddst.2021.102967

  3. Nadzir MM et al (2017) Size and stability of curcumin niosomes from combinations of Tween 80 and Span 80. Sains Malaysiana. 46(12):2455–2460. https://doi.org/10.17576/jsm-2017-4612-22

    Article  CAS  Google Scholar 

  4. Elzoghby AO (2019) Pharmaceutical nanotechnology in Egypt: diverse applications and promising outcomes. Nanomedicine (Lond) 14(6):649–653. https://doi.org/10.2217/nnm-2018-0426

    Article  CAS  Google Scholar 

  5. Ghosh S et al (2019) Role of nanostructures in improvising oral medicine. Toxicol Rep 6:358–368. https://doi.org/10.1016/j.toxrep.2019.04.004

    Article  CAS  Google Scholar 

  6. Böttger R et al (2020) Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 154–155:79–101. https://doi.org/10.1016/j.addr.2020.06.017

    Article  CAS  Google Scholar 

  7. Sett R et al (2020) Effect of temperature and salts on niosome-bound anti-cancer drug along with disruptive influence of cyclodextrins. Spectrochim Acta A Mol Biomol Spectrosc 234:118261. https://doi.org/10.1016/j.saa.2020.118261

    Article  CAS  Google Scholar 

  8. Gharbavi M et al (2018) Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci 2018:6847971. https://doi.org/10.1155/2018/6847971

    Article  CAS  Google Scholar 

  9. Li W et al (2014) Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology. Nanomedicine (Lond) 9(16):2587–2605. https://doi.org/10.2217/nnm.14.127

    Article  CAS  Google Scholar 

  10. Sahu, T. et al. 2021. Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol. 63(2021), 102487. https://doi.org/10.1016/j.jddst.2021.102487

  11. Seleci DA et al (2016) Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomaterials 2016:7372306. https://doi.org/10.1155/2016/7372306

    Article  Google Scholar 

  12. Bajwa N et al (2016) Pharmaceutical and biomedical applications of quantum dots. Artif Cells Nanomed Biotechnol 44(3):758–768. https://doi.org/10.3109/21691401.2015.1052468

    Article  CAS  Google Scholar 

  13. Estanqueiro M et al (2015) New trends in pharmaceutical nanotechnology. Curr Pharm Des 21(36):5169–5171. https://doi.org/10.2174/1381612821999150929095516

    Article  CAS  Google Scholar 

  14. Alexander A et al (2016) Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 241:110–124. https://doi.org/10.1016/j.jconrel.2016.09.017

    Article  CAS  Google Scholar 

  15. Kheirollahpour M et al (2020) Nanoparticles Vaccine Dev Pharm Nanotechnol 8(1):6–21. https://doi.org/10.2174/2211738507666191024162042

    Article  CAS  Google Scholar 

  16. Raghu PK et al (2020) Evolution of nanotechnology in delivering drugs to eyes, skin and wounds via topical route. Pharmaceuticals (Basel) 13(8):167. https://doi.org/10.3390/ph13080167

    Article  CAS  Google Scholar 

  17. Babadi D et al (2021) Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Deliv Sci Technol 62(2021):102324. https://doi.org/10.1016/j.jddst.2021.102324

    Article  CAS  Google Scholar 

  18. Nene S et al (2021) Lipid based nanocarriers: a novel paradigm for topical antifungal therapy. J Drug Deliv Sci Technol 62(2021):102397. https://doi.org/10.1016/j.jddst.2021.102397

    Article  CAS  Google Scholar 

  19. Tambe VS et al (2021) Topical lipid nanocarriers for management of psoriasis-an overview. J Drug Deliv Sci Technol 64(2021):102671. https://doi.org/10.1016/j.jddst.2021.102671

    Article  CAS  Google Scholar 

  20. Danimayostu AA et al (2017) The effect of niosomal system (Span 60-cholesterol) on Diclofenac sodium preparation characteristics and Diclofenac sodium preparation of hydroxypropyl cellulose gel base (HPC). Res J Life Sci 4(1):10–17. https://doi.org/10.21776/ub.rjls.2017.004.01.2.

    Article  Google Scholar 

  21. Osanloo M et al (2018) Niosome-loaded antifungal drugs as an effective nanocarrier system: A mini review. Curr Med Mycol. 4(4):31–36. https://doi.org/10.18502/cmm.4.4.384.

    Article  Google Scholar 

  22. Bhardwaj P et al (2020) Niosomes: a review on niosomal research in the last decade. J Drug Deliv Sci Technol 56(2020):101581. https://doi.org/10.1016/j.jddst.2020.101581

    Article  CAS  Google Scholar 

  23. Moghassemi S, Hadjizadeh A (2014) Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 185:22–36. https://doi.org/10.1016/j.jconrel.2014.04.015

    Article  CAS  Google Scholar 

  24. Qtaish NAL et al (2020) Niosome-based approach for in situ gene delivery to retina and brain cortex as immune-privileged tissues. Pharmaceutics 12(3):198. https://doi.org/10.3390/pharmaceutics12030198

    Article  CAS  Google Scholar 

  25. Liu Y et al (2019) Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 48(2):428–446. https://doi.org/10.1039/C7CS00807D

    Article  CAS  Google Scholar 

  26. Ojemaye MO et al (2020) Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: a review. J Environ Manage 275:111234. https://doi.org/10.1016/j.jenvman.2020.111234

    Article  CAS  Google Scholar 

  27. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13–14):1803–1815. https://doi.org/10.1016/j.addr.2013.07.011

    Article  CAS  Google Scholar 

  28. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767–2781. https://doi.org/10.2147/IJN.S24805

    Article  CAS  Google Scholar 

  29. Campos EVR et al (2020) How can nanotechnology help to combat COVID-19? Oppor Urgent Need J Nanobiotechnol 18(1):125. https://doi.org/10.1186/s12951-020-00685-4

    Article  CAS  Google Scholar 

  30. Malaekeh-Nikouei B et al (2020) The role of nanotechnology in combating biofilm-based antibiotic resistance. J Drug Deliv Sci Technol 60(2020):101880. https://doi.org/10.1016/j.jddst.2020.101880

    Article  CAS  Google Scholar 

  31. Negut I et al (2018) Treatment strategies for infected wounds. Molecules 23(9):2392. https://doi.org/10.3390/molecules23092392

    Article  CAS  Google Scholar 

  32. Nikaeen G et al (2020) Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine (Lond) 15(15):1501–1512. https://doi.org/10.2217/nnm-2020-0117

    Article  CAS  Google Scholar 

  33. Bhavana V et al (2020) COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sci 261:118336. https://doi.org/10.1016/j.lfs.2020.118336

    Article  CAS  Google Scholar 

  34. Page, M.J. et al. 2021. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 372, 160. https://doi.org/10.1136/bmj.n160.

  35. Cruz R et al (2018) Does the incorporation of zinc into calcium phosphate improve bone repair? Syst Rev Ceram Int 44(2):1240–1249. https://doi.org/10.1016/j.ceramint.2017.10.157

    Article  CAS  Google Scholar 

  36. Akbari V et al (2013) Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation. J Nanopart Res 15:1556. https://doi.org/10.1007/s11051-013-1556-y

    Article  CAS  Google Scholar 

  37. Alam M et al (2013) Development, characterization and efficacy of niosomal diallyl disulfide in treatment of disseminated murine candidiasis. Nanomedicine 9(2):247–256. https://doi.org/10.1016/j.nano.2012.07.004

    Article  CAS  Google Scholar 

  38. Barakat HS et al (2014) Vancomycin-eluting niosomes: a new approach to the inhibition of staphylococcal biofilm on abiotic surfaces. AAPS PharmSciTech 15(5):1263–1274. https://doi.org/10.1208/s12249-014-0141-8

    Article  CAS  Google Scholar 

  39. Dwivedi A et al (2018) Layer-by-layer nanocoating of antibacterial niosome on orthopedic implant. Int J Pharm 547(1–2):235–243. https://doi.org/10.1016/j.ijpharm.2018.05.075

    Article  CAS  Google Scholar 

  40. El-Ela FI et al (2020) Treatment of Brucellosis in guinea pigs via a combination of engineered novel pH-responsive curcumin niosome hydrogel and Doxycycline-loaded chitosan-sodium alginate nanoparticles: an in vitro and in vivo study. AAPS PharmSciTech 21(8):326. https://doi.org/10.1208/s12249-020-01833-7

    Article  CAS  Google Scholar 

  41. Ghafelehbashi R et al (2019) Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int J Pharm 569:118580. https://doi.org/10.1016/j.ijpharm.2019.118580

    Article  CAS  Google Scholar 

  42. Gupta A et al (2014) Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity. Int J Nanomedicine 10:171–182. https://doi.org/10.2147/IJN.S70449

    Article  CAS  Google Scholar 

  43. Haque F et al (2017) Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against Candida albicans. Biofouling 33(9):768–779. https://doi.org/10.1080/08927014.2017.1363191

    Article  CAS  Google Scholar 

  44. Hedayati ChM et al (2021) Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa. J Biomed Mater Res A 109(6):966–980. https://doi.org/10.1002/jbm.a.37086

    Article  CAS  Google Scholar 

  45. Khan S et al (2020) Nanoniosome-encapsulated levoflaxicin as an antibacterial agent against Brucella. J Basic Microbiol 60(3):281–290. https://doi.org/10.1002/jobm.201900454

    Article  CAS  Google Scholar 

  46. Khazaeli P et al (2014) Anti-leishmanial effect of itraconazole niosome on in vitro susceptibility of Leishmania tropica. Environ Toxicol Pharmacol 38(1):205–211. https://doi.org/10.1016/j.etap.2014.04.003

    Article  CAS  Google Scholar 

  47. Mahdiun F et al (2017) The effect of tobramycin incorporated with bismuth-ethanedithiol loaded on niosomes on the quorum sensing and biofilm formation of Pseudomonas aeruginosa. Microb Pathog 107:129–135. https://doi.org/10.1016/j.micpath.2017.03.014

    Article  CAS  Google Scholar 

  48. Mirzaie A et al (2020) Preparation and optimization of ciprofloxacin encapsulated niosomes: a new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorg Chem 103:104231. https://doi.org/10.1016/j.bioorg.2020.104231

    Article  CAS  Google Scholar 

  49. Mohammadi S et al (2019) Niosomal Benzoyl peroxide and clindamycin lotion versus niosomal Clindamycin lotion in treatment of acne vulgaris: a randomized clinical trial. Adv Pharm Bull 9(4):578–583. https://doi.org/10.15171/apb.2019.066

    Article  CAS  Google Scholar 

  50. Mostafavi M et al (2019) A novel niosomal combination of selenium coupled with glucantime against Leishmania tropica. Korean J Parasitol 57(1):1–8. https://doi.org/10.3347/kjp.2019.57.1.1

    Article  CAS  Google Scholar 

  51. Mostafavi M et al (2019) Niosomal formulation of amphotericin B alone and in combination with glucantime: In vitro and in vivo leishmanicidal effects. Biomed Pharmacother 116:108942. https://doi.org/10.1016/j.biopha.2019.108942

    Article  CAS  Google Scholar 

  52. Nazari-Vanani R et al (2018) Investigation of anti-leishmanial efficacy of miltefosine and ketoconazole loaded on nanoniosomes. Acta Trop 185:69–76. https://doi.org/10.1016/j.actatropica.2018.05.002

    Article  CAS  Google Scholar 

  53. Parizi MH et al (2019) Antileishmanial activity of niosomal combination forms of Tioxolone along with Benzoxonium chloride against Leishmania tropica. Korean J Parasitol 57(4):359–368. https://doi.org/10.3347/kjp.2019.57.4.359

    Article  CAS  Google Scholar 

  54. Thakkar M, Brijesh S (2018) Physicochemical investigation and in vivo activity of anti-malarial drugs co-loaded in Tween 80 niosomes. J Liposome Res 28(4):315–321. https://doi.org/10.1080/08982104.2017.1376684

    Article  CAS  Google Scholar 

  55. Zoghroban HS et al (2019) Niosomes for enhanced activity of praziquantel against Schistosoma mansoni: in vivo and in vitro evaluation. Parasitol Res 118(1):219–234. https://doi.org/10.1007/s00436-018-6132-z

    Article  Google Scholar 

  56. Brovč EV et al (2020) Rational design to biologics development: the polysorbates point of view. Int J Pharm 581:119285. https://doi.org/10.1016/j.ijpharm.2020.119285

    Article  CAS  Google Scholar 

  57. Cheng M et al (2018) Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Crit Rev Biotechnol 38(1):17–30. https://doi.org/10.1080/07388551.2017.1311296

    Article  CAS  Google Scholar 

  58. Ionova Y, Wilson L (2020) Biologic excipients: importance of clinical awareness of inactive ingredients. PLoS ONE 15(6):e0235076. https://doi.org/10.1371/journal.pone.0235076

    Article  CAS  Google Scholar 

  59. Jones MT et al (2018) Considerations for the use of polysorbates in biopharmaceuticals. Pharm Res 35(8):148. https://doi.org/10.1007/s11095-018-2430-5

    Article  CAS  Google Scholar 

  60. Cortés H et al (2021) Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials (Basel) 14(12):3197. https://doi.org/10.3390/ma14123197

    Article  CAS  Google Scholar 

  61. Dwivedi M et al (2018) Polysorbate degradation in biotherapeutic formulations: Identification and discussion of current root causes. Int J Pharm 552(1–2):422–436. https://doi.org/10.1016/j.ijpharm.2018.10.008

    Article  CAS  Google Scholar 

  62. Kaur G, Mehta SK (2017) Developments of polysorbate (Tween) based microemulsions: preclinical drug delivery, toxicity and antimicrobial applications. Int J Pharm 529(1–2):134–160. https://doi.org/10.1016/j.ijpharm.2017.06.059

    Article  CAS  Google Scholar 

  63. Kerwin BA (2008) Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci 97(8):2924–2935. https://doi.org/10.1002/jps.21190

    Article  CAS  Google Scholar 

  64. Schwartzberg LS, Navari RM (2018) Safety of Polysorbate 80 in the oncology setting. Adv Ther 35(6):754–767. https://doi.org/10.1007/s12325-018-0707-z

    Article  CAS  Google Scholar 

  65. Fiume, M.M. et al. 2019. Safety assessment of sorbitan esters as used in cosmetics. Int J Toxicol. 38(2_suppl), 60S-80S. https://doi.org/10.1177/1091581819871877.

  66. Shimanouchi T et al (2021) Microfluidic and hydrothermal preparation of vesicles using sorbitan monolaurate/polyoxyethylene (20) sorbitan monolaurate (Span 20/Tween 20). Colloids Surf B Biointerfaces 205:111836. https://doi.org/10.1016/j.colsurfb.2021.111836

    Article  CAS  Google Scholar 

  67. Chen S et al (2019) Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 144:18–39. https://doi.org/10.1016/j.ejpb.2019.08.015

    Article  CAS  Google Scholar 

  68. Ercole F et al (2015) Cholesterol modified self-assemblies and their application to nanomedicine. Biomacromol 16(7):1886–1914. https://doi.org/10.1021/acs.biomac.5b00550

    Article  CAS  Google Scholar 

  69. Farmoudeh A et al (2020) Methylene blue-loaded niosome: preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Deliv Transl Res 10(5):1428–1441. https://doi.org/10.1007/s13346-020-00715-6

    Article  CAS  Google Scholar 

  70. Danaei M (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):57. https://doi.org/10.3390/pharmaceutics10020057

    Article  CAS  Google Scholar 

  71. Ferreira CD, Nunes IL (2019) Oil nanoencapsulation: development, application, and incorporation into the food market. Nanoscale Res Lett 14(1):9. https://doi.org/10.1186/s11671-018-2829-2

    Article  CAS  Google Scholar 

  72. Durak S et al (2020) Niosomal drug delivery systems for ocular disease-recent advances and future prospects. Nanomaterials (Basel) 10(6):1191. https://doi.org/10.3390/nano10061191

    Article  CAS  Google Scholar 

  73. Yasam VR et al (2014) A review on novel vesicular drug delivery: proniosomes. Drug Deliv 21(4):243–249. https://doi.org/10.3109/10717544.2013.841783

    Article  CAS  Google Scholar 

  74. Jug M et al (2018) An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems. J Pharm Biomed Anal 147:350–366. https://doi.org/10.1016/j.jpba.2017.06.072

    Article  CAS  Google Scholar 

  75. Manaia EB et al (2017) Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 12:4991–5011. https://doi.org/10.2147/IJN.S133832

    Article  CAS  Google Scholar 

  76. Ramohlola KE et al (2020) Instrumental techniques for characterization of molybdenum disulphide nanostructures. J Anal Methods Chem 2020:8896698. https://doi.org/10.1155/2020/8896698

    Article  CAS  Google Scholar 

  77. Tiernan H et al (2020) ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals. Spectrochim Acta A Mol Biomol Spectrosc 241:118636. https://doi.org/10.1016/j.saa.2020.118636

    Article  CAS  Google Scholar 

  78. Brauner A et al (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14(5):320–330. https://doi.org/10.1038/nrmicro.2016.34

    Article  CAS  Google Scholar 

  79. Roy R et al (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554. https://doi.org/10.1080/21505594.2017.1313372

    Article  CAS  Google Scholar 

  80. Caldwell GW et al (2012) The IC(50) concept revisited. Curr Top Med Chem 12(11):1282–1290. https://doi.org/10.2174/156802612800672844

    Article  CAS  Google Scholar 

  81. Gad, S.C. 2014. LD50/LC50 (lethal dosage 50/lethal concentration 50): In: Wexler P, editor. Encyclopedia of Toxicology (Third Edition). Elsevier Inc, p. 58–60.

  82. Rabin N et al (2015) Biofilm formation mechanisms and targets for develo** antibiofilm agents. Future Med Chem 7(4):493–512. https://doi.org/10.4155/fmc.15.6

    Article  CAS  Google Scholar 

  83. Solano C et al (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104. https://doi.org/10.1016/j.mib.2014.02.008

    Article  CAS  Google Scholar 

  84. Macià MD et al (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20(10):981–990. https://doi.org/10.1111/1469-0691.12651

    Article  Google Scholar 

  85. Hamishehkar H et al (2013) Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 10(2):261–272. https://doi.org/10.1517/17425247.2013.746310

    Article  CAS  Google Scholar 

  86. Sun MC et al (2020) The nano-drug delivery system for the treatment of vitiligo. Int J Nanomedicine 15:3267–3279. https://doi.org/10.2147/IJN.S245326

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rede NanoSaude and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their support.

Funding

This paper was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Brazilian agency; Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)— Cientista do Nosso Estado (CNE) [grant number: E-26/201.077/2021]; Apoio aos Programas e Cursos de Pós-Graduação Stricto Sensu do Estado do Rio de Janeiro 2020 [grant number: E-26/210.136/2021]; Rede NanoSaude [grant number: E-26/010.000981/2019]; and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - Bolsa Produtividade em Pesquisa PQ [grant number: 309522/2020-2].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Tatielle do Nascimento: conceptualization, methodology, formal analysis, investigation, data curation, writing (review and editing), visualization, and project administration. Denise de Abreu Garófalo: writing (review and editing), and visualization. Mariana Sato de Souza Bustamante Monteiro: writing (review and editing), and visualization. Ralph Santos-Oliveira: writing (review and editing), and visualization. Ana Paula dos Santos Matos: conceptualization, methodology, writing (review and editing), visualization, supervision, and project administration. Eduardo Ricci-Júnior: conceptualization, methodology, writing (review and editing), visualization, supervision, and project administration.

Corresponding author

Correspondence to Tatielle do Nascimento.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The authors declare no conflicts of interest in this research.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, T., de Abreu Garófalo, D., de Souza Bustamante Monteiro, M.S. et al. Drug Encapsulation: Review of Niosomes for Promoting Antimicrobial Activity. J Nanopart Res 24, 262 (2022). https://doi.org/10.1007/s11051-022-05637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05637-7

Keywords

Navigation