Log in

Size and morphological effect of Au–Fe3O4 heterostructures on magnetic resonance imaging

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Various sizes and morphologies of Au–Fe3O4 heterostructures including dumbbell-like nanoparticles (DBNPs) and flower-like nanoparticles (FLNPs) have been synthesized via thermal decomposition of iron–oleate complex in the presence of different sizes of Au seeds for MR imaging application. The size of Au seeds and the concentration of iron–oleate complex have been proved to be crucial parameters for controlling the morphology of Au–Fe3O4 heterostructures. The use of 5-nm Au seeds can only fabricate Au–Fe3O4 DBNPs, while both DBNPs and FLNPs are produced by using 10-nm Au NPs as the seeds. The obtained Au–Fe3O4 heterostructures are then modified with 8-arm PEG-amine and show a good phase transfer with satisfactory hydrodynamic size for further MR imaging application. The Au–Fe3O4 DBNPs with small Au seeds result in an increase in spin–spin relaxivity, and the r 2 values are 125.5 ± 13.5, 118.3 ± 2.3, and 143.8 ± 3.2 mM−1 s−1 for 5-nm Au–Fe3O4 DBNPs, 10-nm Au–Fe3O4 DBNPs, and 10-nm Au–Fe3O4 FLNPs, respectively. The Au–Fe3O4 FLNPs shows an increased relaxivity when compared with that of Au–Fe3O4 DBNPs, presumably attributed to the magnetic coupling effect among Fe3O4 domains on the surface of Au seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berret JF, Schonbeck N, Gazeau F, El Kharrat D, Sandre O, Vacher A, Airiau M (2006) Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. J Am Chem Soc 128:1755–1761. doi:10.1021/ja0562999

    Article  CAS  Google Scholar 

  • Chen HJ, Kou XS, Yang Z, Ni WH, Wang JF (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237. doi:10.1021/la800305j

    Article  CAS  Google Scholar 

  • Cho SJ, Jarrett BR, Louie AY, Kauzlarich SM (2006) Gold-coated iron nanoparticles: a novel magnetic resonance agent for T-1 and T-2 weighted imaging. Nanotechnology 17:640–644. doi:10.1088/0957-4484/17/3/004

    Article  CAS  Google Scholar 

  • Chung HJ, Lee H, Bae KH, Lee Y, Park J, Cho SW, Hwang JY, Park H, Langer R, Anderson D, Park TG (2011) Facile synthetic route for surface-functionalized magnetic nanoparticles: cell labeling and magnetic resonance imaging studies. ACS Nano 5:4329–4336. doi:10.1021/nn201198f

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides. VCH, New York

    Google Scholar 

  • De M, Chou SS, Joshi HM, Dravid VP (2011) Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv Drug Deliv Rev 63:1282–1299. doi:10.1016/j.addr.2011.07.001

    Article  CAS  Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun SH (2009a) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542. doi:10.1039/b815548h

    Article  CAS  Google Scholar 

  • Frey NA, Phan MH, Srikanth H, Srinath S, Wang C, Sun SH (2009b) Interparticle interactions in coupled Au–Fe3O4 nanoparticles. J Appl Phys 105:07B502. doi:10.1063/1.3056582

  • Garcia I, Gallo J, Genicio N, Padro D, Penades S (2011) Magnetic glyconanoparticles as a versatile platform for selective immunolabeling and imaging of cells. Bioconj Chem 22:264–273. doi:10.1021/bc1003923

    Article  CAS  Google Scholar 

  • Gu HW, Yang ZM, Gao JH, Chang CK, Xu B (2005) Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127:34–35. doi:10.1021/ja045220h

    Article  CAS  Google Scholar 

  • Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511. doi:10.1021/cm049532v

    Article  CAS  Google Scholar 

  • Ji XJ, Shao RP, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA, Liang G, Luo ZP, Park K, Markert JT, Li C (2007) Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C 111:6245–6251. doi:10.1021/jp0702245

    Article  CAS  Google Scholar 

  • Jiang J, Gu HW, Shao HL, Devlin E, Papaefthymiou GC, Ying JY (2008) Manipulation bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv Mater 20:4403–4407. doi:10.1002/adma.200800498

    Article  CAS  Google Scholar 

  • ** YD, Jia CX, Huang SW, O’Donnell M, Gao XH (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41. doi:10.1038/ncomms1042

    Google Scholar 

  • Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733. doi:10.1021/ja0422155

    Article  CAS  Google Scholar 

  • Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S (2011) Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology 22:155101. doi:10.1088/0957-4484/22/15/155101

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  CAS  Google Scholar 

  • Lin FH, Doong RA (2011) Bifunctional Au–Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115:6591–6598. doi:10.1021/jp110956k

    Article  CAS  Google Scholar 

  • Lin FH, Chen W, Liao YH, Doong RA, Li YD (2011) Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res 4:1223–1232. doi:10.1007/s12274-011-0173-2

    Article  CAS  Google Scholar 

  • Liu J, Zhang W, Zhang HL, Yang ZY, Li TR, Wang BD, Huo X, Wang R, Chen HT (2013) A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem Commun 49:4938–4940. doi:10.1039/c3cc41984c

    Article  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46:1222–1244. doi:10.1002/anie.200602866

    Article  CAS  Google Scholar 

  • Mamidala V, **ng GC, Ji W (2010) Surface plasmon enhanced third-order nonlinear optical effects in Ag–Fe3O4 nanocomposites. J Phys Chem C 114:22466–22471. doi:10.1021/jp1080912

    Article  CAS  Google Scholar 

  • Mao YW, Yi PW, Deng ZW, Ge JP (2013) Fe3O4–Ag heterostructure nanocrystals with tunable Ag domains and magnetic properties. CrystEngComm 15:3575–3581. doi:10.1039/c3ce40095f

    Article  CAS  Google Scholar 

  • Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148. doi:10.1002/adma.200802366

    Article  CAS  Google Scholar 

  • Narayanan S, Sathy BN, Mony U, Koyakutty M, Nair SV, Menon D (2012) Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces 4:251–260. doi:10.1021/am201311c

    Article  CAS  Google Scholar 

  • Papa AL, Maurizi L, Vandroux D, Walker P, Millot N (2011) Synthesis of titanate nanotubes directly coated with USPIO in hydrothermal conditions: a new detectable nanocarrier. J Phys Chem C 115:19012–19017. doi:10.1021/jp2056893

    Article  CAS  Google Scholar 

  • Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895. doi:10.1038/nmat1251

    Article  CAS  Google Scholar 

  • Peng S, Lee YM, Wang C, Yin HF, Dai S, Sun SH (2008) A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res 1:229–234. doi:10.1007/s12274-008-8026-3

    Article  CAS  Google Scholar 

  • Smolensky ED, Park HY, Zhou Y, Rolla GA, Marjańska M, Botta M, Pierre VC (2013) Scaling laws at the nano size: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J Mater Chem B 1:2818–2828. doi:10.1039/C3TB00369H

    Article  CAS  Google Scholar 

  • Umut E, Pineider F, Arosio P, Sangregorio C, Corti M, Tabak F, Lascialfari A, Ghigna P (2012) Magnetic, optical and relaxometric properties of organically coated gold-magnetite (Au–Fe3O4) hybrid nanoparticles for potential use in biomedical applications. J Magn Magn Mater 324:2373–2379. doi:10.1016/j.jmmm.2012.03.005

    Article  CAS  Google Scholar 

  • Wang C, Xu CJ, Zeng H, Sun SH (2009a) Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv Mater 21:3045–3052. doi:10.1002/adma.200900320

    Article  CAS  Google Scholar 

  • Wang CG, Chen J, Talavage T, Irudayaraj J (2009b) Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Edit 48:2759–2763. doi:10.1002/anie.200805282

    Article  CAS  Google Scholar 

  • Wang MH, Wang C, Young KL, Hao LL, Medved M, Rajh T, Fry HC, Zhu LY, Karczmar GS, Watson C, Jiang JS, Markovic NM, Stamenkovic VR (2012) Cross-linked heterogeneous nanoparticles as bifunctional probe. Chem Mater 24:2423–2425. doi:10.1021/cm300381f

    Article  CAS  Google Scholar 

  • Wei YH, Klajn R, Pinchuk AO, Grzybowski BA (2008) Synthesis, shape control, and optical properties of hybrid Au/Fe3O4 “nanoflowers”. Small 4:1635–1639. doi:10.1002/smll.200800511

    Article  CAS  Google Scholar 

  • **e J, Zhang F, Aronova M, Zhu L, Lin X, Quan QM, Liu G, Zhang GF, Choi KY, Kim K, Sun XL, Lee S, Sun SH, Leapman R, Chen XY (2011) Manipulating the power of an additional phase: a flower-like Au–Fe3O4 optical nanosensor for imaging protease expressions in vivo. ACS Nano 5:3043–3051. doi:10.1021/nn200161v

    Article  CAS  Google Scholar 

  • Xu C, **e J, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun SH (2008) Au–Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Edit 47:173–176. doi:10.1002/anie.200704392

    Article  CAS  Google Scholar 

  • Yu H, Chen M, Rice PM, Wang SX, White RL, Sun SH (2005) Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett 5:379–382. doi:10.1021/nl047955q

    Article  CAS  Google Scholar 

  • Zhen GL, Muir BW, Moffat BA, Harbour P, Murray KS, Moubaraki B, Suzuki K, Madsen I, Agron-Olshina N, Waddington L, Mulvaney P, Hartley PG (2011) Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J Phys Chem C 115:327–334. doi:10.1021/jp104953z

    Article  CAS  Google Scholar 

  • Zhou T, Wu BY, **ng D (2012) Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J Mater Chem 22:470–477. doi:10.1039/c1jm13692e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank National Science Council, Taiwan for financial support under Contract No. NSC99-2113-M-007-007-MY3. The authors thank the experimental assistance provided by Molecular Imaging Center, Chang Gung Memorial Hospital, Linkou, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-an Doong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Fh., Peng, HH., Yang, YH. et al. Size and morphological effect of Au–Fe3O4 heterostructures on magnetic resonance imaging. J Nanopart Res 15, 2139 (2013). https://doi.org/10.1007/s11051-013-2139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2139-7

Keywords

Navigation