Log in

Contact control for gras** a non-cooperative satellite by a space robot

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the contact control problem of a space robot to grasp a non-cooperative satellite is investigated in detail, and a new capture control strategy is proposed. Firstly, the dynamic equation of the robot system is derived based on the multibody dynamics theory, and a modified Hertz model is used to describe the contact force between the robot end-effector and the target satellite. Then, a novel position-based impedance control strategy for capturing the target satellite is proposed. This control strategy is to capture the target satellite by realizing soft contact between the end-effector and the target satellite, thus the target satellite will not depart from the end-effector after their contact. Different from the other existing capture control strategies, the proposed strategy needs only the kinematic information of the space robot, so the control performance requirement is lower and is easier to implement in practice. To verify the validity of the proposed capture control strategy, simulations are conducted at the end of this paper, and the results indicate that the target satellite can be grasped effectively using the proposed capture control strategy if the motion of the target satellite is translational or tumbling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Wee, L.B., Walker, M.W.: On the dynamics of contact between space robots and configuration control for impact minimization. IEEE Trans. Robot. Autom. 9(5), 581–591 (1993)

    Article  Google Scholar 

  2. Cyril, X., Jaar, G.J., Misra, A.K.: The effect of payload impact on the dynamics of a space robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2070–2075 (1993)

    Google Scholar 

  3. Cyril, X., Misra, A.K., Ingham, M., Jaar, G.J.: Postcapture dynamics of a spacecraft–manipulator–payload system. J. Guid. Control Dyn. 23(1), 95–100 (2000)

    Article  Google Scholar 

  4. Fukushima, Y., Inaba, N., Oda, M.: Capture and berthing experiment of a massive object using ETS7 space robot. In: AIAA Astrodynamics Specialist Conference, pp. 635–638 (2000)

    Google Scholar 

  5. Friend, R.B.: Orbital Express program summary and mission overview. Proc. SPIE 6958, 1–3 (2008)

    Google Scholar 

  6. Nishida, S., Yoshikawa, T.: Space debris capture by a joint compliance controlled robot. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 1, pp. 496–502 (2003)

    Google Scholar 

  7. Yoshida, K., Nakanishi, H.: Impedance matching in capturing a satellite by a space robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3059–3064 (2003)

    Google Scholar 

  8. Yoshida, K., Nakanishi, H., Ueno, H., Inaba, N., Nishimaki, T., Oda, M.: Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite. Adv. Robot. 18(2), 175–198 (2004)

    Article  Google Scholar 

  9. Nakanishi, H., Yoshida, K.: Impedance control for free-flying space robots-basic equations and applications. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3137–3142 (2006)

    Google Scholar 

  10. Uyama, N., Hirano, D., Nakanishi, H., Nagaoka, K., Kazuya, Y.: Impedance-based contact control of a free-flying space robot with respect to coefficient of restitution. In: IEEE/SICE International Symposium on System Integration (SII), pp. 1196–1201 (2011)

    Chapter  Google Scholar 

  11. Uyama, N., Nakanishi, H., Nagaoka, K., Yoshida, K.: Impedance-based contact control of a free-flying space robot with a compliant wrist for non-cooperative satellite capture. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4477–4482 (2012)

    Google Scholar 

  12. Stolfi, A., Gasbarri, P., Sabatini, M.: A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target. Acta Astronaut. 139, 243–253 (2017)

    Article  Google Scholar 

  13. Stolfi, A., Gasbarri, P., Sabatini, M.: A parametric analysis of a controlled deployable space manipulator for capturing a non-cooperative flexible satellite. Acta Astronaut. 148, 317–326 (2018)

    Article  Google Scholar 

  14. Ma, G., Jiang, Z., Li, H., Gao, J., Yu, Z., et al.: Hand-eye servo and impedance control for manipulator arm to capture target satellite safely. Robotica 33(4), 848–864 (2015)

    Article  Google Scholar 

  15. Flores-Abad, A., Zhang, L., Wei, Z., Ma, O.: Optimal capture of a tumbling object in orbit using a space manipulator. J. Intell. Robot. Syst. 86(2), 199–211 (2017)

    Article  Google Scholar 

  16. Mou, F., Wu, S., **ao, X., Zhang, T., Ma, O.: Control of a space manipulator capturing a rotating object in the three-dimensional space. In: International Conference on Ubiquitous Robots, pp. 763–768 (2018)

    Google Scholar 

  17. Wu, S., Mou, F., Liu, Q., Cheng, J.: Contact dynamics and control of a space robot capturing a tumbling object. Acta Astronaut. 151, 532–542 (2018)

    Article  Google Scholar 

  18. Liu, X.F., Li, H.Q., Chen, Y.J., Cai, G.P., Wang, X.: Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm. Multibody Syst. Dyn. 33(3), 315–332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, X.F., Li, H.Q., Chen, Y.J., Cai, G.P.: Dynamics and control of space robot considering joint friction. Acta Astronaut. 111, 1–18 (2015)

    Article  Google Scholar 

  20. Miller, A.J., Gray, G.L.: Nonlinear spacecraft dynamics with a flexible appendage, dam**, and moving internal submasses. J. Guid. Control Dyn. 24(3), 605–615 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant numbers 11772187, 11802174, 61603304), the China Postdoctoral Science Foundation (grant number 2018M632104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-** Cai or Ming-Ming Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09730-4

Keywords

Navigation