Log in

HiL simulation for testing joint stability after total knee arthroplasty

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Instability of total knee replacements (TKRs) remains one of the most prevalent complications after total knee arthroplasty. Especially the actual event of instability involving complex interactions between implant components and soft tissue structures is not well understood. Therefore, the purpose of this work is to introduce a novel approach for testing TKRs with respect to stability of the artificial knee joint based on a mechatronic hardware-in-the-loop (HiL) test system. The mechanical test setup is composed of an industrial robot with a compliant support for the endoprosthesis to be tested. It interacts with a biomechanical multibody model consisting of all relevant body parts of the lower extremity incorporating ligament structures of the knee joint. According to the movement angles and reaction forces/torque provided by the multibody model, the robot rotates and loads the femoral component with respect to the tibial component. The resulting position and loading of the femoral component are measured and fed back into the model, thus closing the control loop for HiL simulations. The functional principle of the HiL simulation is proven by simulating a passive flexion movement of a bicondylar, posterior cruciate ligament retaining TKR using the described biomechanical multibody model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ambrósio, J.A.C., Silva, M.P.T.: A biomechanical multibody model with a detailed locomotion muscle apparatus. In: Ambrósio, J.A.C. (ed.) Advances in Computational Multibody Systems. Springer, Dordrecht (2005)

    Chapter  Google Scholar 

  2. Bader, R., Mittelmeier, W., Steinhauser, E.: Failure analysis of total knee replacement. Orthopäde 35, 896–903 (2006)

    Article  Google Scholar 

  3. Boge, R., Ma, O.: Using advanced industrial robotics for spacecraft rendezvous and docking simulation. In: ICRA 2011 Communications, Shanghai, China (2011)

    Google Scholar 

  4. Bozic, K.J., Kurtz, S.M., Lau, E., Ong, K., Chiu, V., Vail, T.P., Rubash, H.E., Berry, D.J.: The epidemiology of revision total knee arthroplasty in the United States. Clin. Orthop. Relat. Res. 9, 45–51 (2010)

    Article  Google Scholar 

  5. Eichberger, A.: Generating multibody real-time models for hardware-in-the-loop applications. In: Proceedings of AVEC 2002, Hiroshima, Japan (2002)

    Google Scholar 

  6. Fehring, T.K., Valadie, A.L.: Knee instability after total knee arthroplasty. Clin. Orthop. Relat. Res. 299, 157–162 (1994)

    Google Scholar 

  7. Frey, M., Burgkart, R., Regenfelder, F., Riener, R.: Optimised robot-based system for the exploration of elastic joint properties. Med. Biol. Eng. Comput. 42, 674–678 (2004)

    Article  Google Scholar 

  8. Frey, M., Riener, R., Michas, C., Regenfelder, F., Burgkart, R.: Elastic properties of an intact and ACL-ruptured knee joint: Measurement, mathematical modelling, and haptic rendering. J. Biomech. 39, 1371–1382 (2006)

    Article  Google Scholar 

  9. Herrmann, S., Kaehler, M., Souffrant, R., Rachholz, R., Zierath, J., Kluess, D., Mittelmeier, W., Woernle, C., Bader, R.: HiL simulation in biomechanics: A new approach for testing total joint replacements, Comput. Methods Programs Biomed. (2011, in press). doi:10.1016/j.cmpb.2011.07.012

  10. Kähler, M., Woernle, C., Bader, R.: Hardware-in-the-loop-simulation of constraint elements in mechanical systems. In: Kecskeméthy, A., Mueller, A. (eds.) Computational Kinematics. Springer, Berlin (2009)

    Google Scholar 

  11. Kähler, M., Rachholz, R., Herrmann, S., Zierath, J., Souffrant, R., Kluess, D., Bader, R., Woernle, C.: Development of a biomechanical multibody model for the hardware-in-the-loop simulation of total hip endoprostheses. In: Mikkola, A., Schiehlen, W. (eds.) Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland (2010)

    Google Scholar 

  12. Kim, S.-S., Jeong, W.H.: Real-time multibody vehicle model with bush compliance effect using quasi-static analysis for HILS. Multibody Syst. Dyn. 22, 367–382 (2009)

    Article  MATH  Google Scholar 

  13. Klein Horsman, M.D., Koopman, H.F., van der Helm, F.C., Prose, L.P., Veeger, H.E.: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22, 239–247 (2007)

    Article  Google Scholar 

  14. Kluess, D., Souffrant, R., Mittelmeier, W., Wree, A., Schmitz, K.P., Bader, R.: A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation. Comput. Methods Programs Biomed. 95, 23–30 (2009)

    Article  Google Scholar 

  15. Krenn, R., Schaefer, B.: Limitations of hardware-in-the-loop simulations of space robotics dynamics using industrial robots. In: Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space, ESA SP-440. European Space Agency, Noordwijk (1999)

    Google Scholar 

  16. Lehner, S.: Entwicklung und Validierung biomechanischer Computermodelle und deren Einsatz in der Sportwissenschaft. Dissertation, Universität Koblenz-Landau (2008)

  17. Mulhall, K.J., Ghomrawi, H.M., Scully, S., Callaghan, J.J., Saleh, K.J.: Current etiologies and modes of failure in total knee arthroplasty revision. Clin. Orthop. Relat. Res. 446, 45–50 (2006)

    Article  Google Scholar 

  18. Rudy, T.W., Livesay, G.A., Woo, S.L.Y., Fu, F.H.: A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J. Biomech. 29(10), 1357–1360 (1996)

    Article  Google Scholar 

  19. Rulka, W., Pankiewicz, E.: MBS approach to generate equations of motions for HiL-simulations in vehicle dynamics. Multibody Syst. Dyn. 14, 367–386 (2005)

    Article  MATH  Google Scholar 

  20. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schuenke, M., Schulte, E., Schumacher, U.: Thieme atlas of anatomy—General anatomy and musculoskeletal system. Thieme, Stuttgart (2005)

    Google Scholar 

  22. Sharkey, P.F., Hozack, W.J., Rothman, R.H., Shastri, S., Jacoby, S.M.: Insall award paper: Why are total knee arthroplasties failing today? Clin. Orthop. Relat. Res. 404, 7–13 (2002)

    Article  Google Scholar 

  23. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, Berlin (2008)

    Google Scholar 

  24. Spaegele, T., Kistner, A., Gollhofer, A.: Modelling, simulation and optimisation of a human vertical jump. J. Biomech. 32, 521–530 (1999)

    Article  Google Scholar 

  25. Spitzer, V., Ackerman, M.J., Scherzinger, A.L., Whitlock, D.: The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3, 118–130 (1996)

    Article  Google Scholar 

  26. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (1990)

    Google Scholar 

  27. Woernle, C., Kähler, M., Rachholz, R., Herrmann, S., Zierath, J., Souffrant, R., Bader, R.: Robot-based HiL test of joint endoprostheses. In: Stanis̆ić, M.M., Lenarc̆ic̆, J. (eds.) Advances in Robot Kinematics. Springer, Berlin (2010)

    Google Scholar 

  28. Woo, S.L.Y., Kanamori, A., Zeminski, J., Yagi, M., Papageorgiou, C., Fu, F.H.: The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon—A cadaveric study comparing anterior tibial and rotational loads. J. Bone Jt. Surg. 84, 907–914 (2002)

    Google Scholar 

  29. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, H.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion. Part 1. Ankle, hip, and spine. J. Biomech. 35, 543–548 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Deutsche Forschungsgemeinschaft (BA 3347/3-1/2 and WO 452/8-1/2) and the Ministry of Education, Science, and Culture of the state Mecklenburg-Vorpommern, Germany, for supporting this research work and Dr. Stefan Lehner for his support in the modeling of ligament structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Woernle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, S., Woernle, C., Kaehler, M. et al. HiL simulation for testing joint stability after total knee arthroplasty. Multibody Syst Dyn 28, 55–67 (2012). https://doi.org/10.1007/s11044-011-9283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9283-6

Keywords

Navigation