Log in

Simultaneous determination of dynamic fracture toughness and tensile strength through a single three-point bending test

  • Research
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The fracture process zone (FPZ) has been assumed to activate microcrack evolution and influence the mechanical parameters of the rock specimen. This can be linked to the grain size of the rock specimens located in the path of the crack propagation. However, few studies have considered the effect of the grain distribution on the size of the FPZ, especially under dynamic loadings. In this paper, we analyze the mechanism by which the strain rate and grain distribution affect the FPZ and the dynamic mechanical parameters. We selected three kinds of sandstone specimens to represent the mesostructure heterogeneities characterized by the fractal dimensions. Also, the size of the FPZ can be calculated by the grain size and the dynamic fictitious crack length under the quantified mesostructure heterogeneities and the concept of the box dimension method. Based on the results, the dynamic strength and fracture toughness can be obtained with unknown coefficients. The unknown coefficients were then determined via the dynamic fracture test, in which the processed semicircle bending (SCB) specimens were used for the pendulum hammer-driven split Hopkinson pressure bar (SHPB) apparatus. Finally, the results were validated using the existing experimental methods recommended by the International Society for Rock Mechanics (ISRM). This study provides a valid and simpler method for the simultaneous determination of the dynamic fracture toughness and tensile strength of rock specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(R\) :

Radius

\(B\) :

Thickness

\(a_{0}\) :

Notched length

\(P\) :

Dynamic loading

\(\varepsilon \) In :

Incident strain

\(\varepsilon \) Re :

Reflected strain

\(\varepsilon \) Tr :

Transmitted strain

\(A\) :

Cross-sectional area of the compressive bars

\(l_{0}\) :

Initial length

\(P\) max :

Maximum load

\(\sigma _{n}\) :

Nominal stress

S:

Span length

\(\Delta a_{\mathit{fic}}\) :

Fictitious crack growth length

\(g\) ave :

Average grain size near the notched tip

\(\delta \) :

Grain size of the rock specimen

\(d_{i}\) :

Characteristic mineral particle

\(d_{\mathrm{M}}\) :

Maximum grain size

\(M_{\mathrm{T}}\) :

Total particle mass

\(D\) :

Fractal dimension

\(V\) :

Impact velocity

\(f_{t}\) :

Dynamic tensile strength

\(K\) IC :

Dynamic fracture toughness

References

  • Cui, Z., Liu, D., An, G., et al.: A comparison of two ISRM suggested Chevron notched specimens for testing Mode-I rock fracture toughness [technical note]. Int. J. Rock Mech. Min. Sci. 47(5), 871–876 (2010)

    Article  Google Scholar 

  • Dai, F., Chen, R., Iqbal, M.J., **a, K.: Dynamic cracked Chevron notched Brazilian disc method for measuring rock fracture parameters. Int. J. Rock Mech. Min. Sci. 47(4), 606–613 (2010)

    Article  Google Scholar 

  • Dai, F., **a, K., Zheng, H., Wang, Y.X.: Determination of dynamic rock mode-I fracture parameters using cracked Chevron notched semi-circular bend specimen. Eng. Fract. Mech. 78(15), 2633–2644 (2011)

    Article  Google Scholar 

  • Duan, K., Hu, X., Wittmann, F.H.: Size effect on specific fracture energy of concrete. Eng. Fract. Mech. 74(1–2), 87–96 (2007)

    Article  Google Scholar 

  • Einav, I.: Breakage mechanics-part I: theory. J. Mech. Phys. Solids 55(6), 1274–1297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Guan, J.F., Hu, X.Z., Li, Q.B.: In-depth analysis of notched 3-P-B concrete fracture. Eng. Fract. Mech. 165, 51–71 (2016)

    Article  Google Scholar 

  • Guan, J.F., Hu, X.Z., et al.: Wedge-splitting tests for tensile strength and fracture toughness of concrete. Theor. Appl. Fract. Mech. 93, 263–275 (2018)

    Article  Google Scholar 

  • Hillerborg, A.: Application of the fictitious crack model to different types of materials. Int. J. Fract. 51, 95–102 (1991)

    Article  Google Scholar 

  • Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782 (1976)

    Article  Google Scholar 

  • Hoover, C.G., Bazant, Z.P.: Comprehensive concrete fracture tests: size effects of Type 1 & 2, crack length effect and postpeak. Eng. Fract. Mech. 110, 281–289 (2013)

    Article  Google Scholar 

  • Hu, X.Z., Duan, K.: Size effect: influence of proximity of fracture process zone to specimen boundary. Eng. Fract. Mech. 74(7), 1093–1100 (2007)

    Article  Google Scholar 

  • Hu, X.Z., Duan, K.: Size effect and quasi-brittle fracture: the role of FPZ. Int. J. Fract. 154, 3–14 (2008)

    Article  MATH  Google Scholar 

  • Hu, X.Z., Wittmann, F.H.: Fracture energy and fracture process zone. Mater. Struct. 25(6), 319–326 (1992)

    Article  Google Scholar 

  • Janach, W.: Failure of granite under compression. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 14, 209–215 (1977)

    Article  Google Scholar 

  • Kranz, R.L.: Crack growth and development during creep of Barre granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16, 23–35 (1979)

    Article  Google Scholar 

  • Labuz, J., Shah, S., Dowding, C.: The fracture process zone in granite: evidence and effect. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. (1987)

  • Lade, P.V., Yamamuro, J.: Significance of particle crushing in granular materials. J. Geotech. Geoenviron. Eng. 122(4), 309–316 (1996)

    Article  Google Scholar 

  • Li, B.Q., Einstein, H.H.: Comparison of visual and acoustic emission observations in a four point bending experiment on Barre granite. Rock Mech. Rock Eng. 50(9), 2277–2296 (2017)

    Article  Google Scholar 

  • Li, X., Marasteanu, M.: The fracture process zone in asphalt mixture at low temperature. Eng. Fract. Mech. 77(7), 1175–1190 (2010)

    Article  Google Scholar 

  • Li, D., Li, B., Han, Z., Zhu, Q.: Evaluation on rock tensile failure of the Brazilian discs under different loading configurations by digital Image correlation. App. Sci. 10(16) (2020)

  • Liu, W., Hu, C., Li, L., Zhang, X., Peng, L., Qiao, Y., Yue, Z.: Experimental study on dynamic notch fracture toughness of V-notched rock specimens under impact loads. Eng. Fract. Mech. 259, 108109 (2022)

    Article  Google Scholar 

  • Ouchterlony, F.: Suggested methods for determining the fracture toughness of rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(2), 71–96 (1988)

    Article  Google Scholar 

  • Parisio, F., Tarokh, A., Makhnenko, R., et al.: Experimental characterization and numerical modelling of fracture processes in granite. Int. J. Solids Struct. 163, 102–116 (2019)

    Article  Google Scholar 

  • Sgambitterra, E., Lamuta, C., Candamano, S., Pagnotta, L.: Brazilian disk test and digital image correlation: a methodology for the mechanical characterization of brittle materials. Mater. Struct. 51(1) (2018)

  • Tapponnier, P., Brace, W.F.: Development of stress-induced microcracks in Westerly granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 13, 103–112 (1976)

    Article  Google Scholar 

  • Tutluoglu, L., Mode, K.C.: I fracture toughness determination with straight notched disk bending method. Int. J. Rock Mech. Min. Sci. 48(8), 1248–1261 (2011)

    Article  Google Scholar 

  • Wang, Q.Z.: Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked Chevron notched Brazilian disc (CCNBD) specimens. Int. J. Rock Mech. Min. Sci. 47(6), 1006–1011 (2010)

    Article  Google Scholar 

  • Wang, Y.S., Hu, X.Z.: Determination of tensile strength and fracture toughness of granite using notched three-point-bend specimens. Rock Mech. Rock Eng. 10(3), 48–59 (2016)

    Google Scholar 

  • Wang, Q.Z., Wu, L.Z.: The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: experimental results. Int. J. Rock Mech. Min. Sci. 41(3), 357–358 (2004)

    Article  Google Scholar 

  • Wang, Q.Z., **ng, L.: Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks. Eng. Fract. Mech. 64(2), 193–201 (1999)

    Article  Google Scholar 

  • Wang, Q.Z., Jia, X.M., et al.: The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int. J. Rock Mech. Min. Sci. 41(2), 245–253 (2004)

    Article  Google Scholar 

  • Wang, Q.Z., Ni, M., Zhang, C., Li, L.: Clarification of formulae for stress intensity factor for DCDC specimens. Int. J. Fract. 201(2), 249–250 (2016)

    Article  Google Scholar 

  • Wei, M.D., Dai, F., Xu, N.W., et al.: Experimental and numerical study on the fracture process zone and fracture toughness determination for ISRM suggested semi-circular bend rock specimen. Eng. Fract. Mech. 154, 43–56 (2016)

    Article  Google Scholar 

  • **a, K., Yao, W.: Dynamic rock tests using split Hopkinson (Kolsky) bar system – a review. J. Rock Mech. Geotech. Eng. 7(1), 27–59 (2015)

    Article  Google Scholar 

  • Yao, W., **a, K.W.: Dynamic notched semi-circle bend (NSCB) method for measuring fracture properties of rocks: fundamentals and applications. J. Rock Mech. Geotech. Eng. 11, 1066–1093 (2019)

    Article  Google Scholar 

  • Yin, T., Li, X., Cao, W., **a, K.: Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test. Rock Mech. Rock Eng. 48, 2213–2223 (2015)

    Article  Google Scholar 

  • Yu, M., Wei, C.H., Niu, L.L., et al.: Calculation for tensile strength and fracture toughness of granite with three kinds of grain sizes using three-point-bending test, 13, 1–13 (2018)

  • Zhang, Z.X.: An empirical relation between mode I fracture toughness and the tensile strength of rock. Int. J. Rock Mech. Min. Sci. 39, 401–406 (2002)

    Article  Google Scholar 

  • Zhou, X.P., Yang, H.Q., Zhang, Y.X.: Rate dependent critical strain energy density factor of Huanglong limestone. Theor. Appl. Fract. Mech. 51(1), 57–61 (2009)

    Article  Google Scholar 

  • Zhou, Y.X., **a, K., Li, X.B., et al.: Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int. J. Rock Mech. Min. Sci. 49, 105–112 (2012)

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Key Research and Development Program of China (2020YFA0710500), National Science Foundation of China (Grant Nos. 12002004 and 51304037), the Fundamental Research Funds for the Central Universities (Grant Nos. N160104008 and N160103005), Natural Science Foundation of Liaoning Province (2022-MS-038), fundamental research project of SIA(2022JC1K06) and State Key Laboratory of Robotics (Grant No. 2022-Z09).

Author information

Authors and Affiliations

Authors

Contributions

Yu and Luo conducted the experiment and wrote the main manuscript. **g, Li and Wang prepared the figures and tables. All authors reviewed and revised the manuscript.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Luo, H., **g, H. et al. Simultaneous determination of dynamic fracture toughness and tensile strength through a single three-point bending test. Mech Time-Depend Mater (2023). https://doi.org/10.1007/s11043-023-09639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11043-023-09639-3

Keywords

Navigation