Log in

Survey of imperceptible and robust digital audio watermarking systems

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Robustness, imperceptibility and embedding capacity are the preliminary requirements of any digital audio watermarking technique. However, research has concluded that these requirements are difficult to achieve at the same time. Thus, the watermarking technique is closely dependent on the solution that manages the robustness / imperceptibility trade-off. A large majority of research work has been devoted to improving this trade-off by implementing increasingly advanced techniques. For conciseness and efficiency, the comprehensive review reported in this paper mainly considers the following aspects imperceptibility and robustness among the criteria, as they determine the key performance of most existing audio watermarking systems. In this paper we have introduce the basic concepts of digital audio watermarking, the performance characteristics, and a classification of digital audio watermarking systems according to the extraction/detection process or to human perception. We have also presented various digital audio watermarking applications. Further, we have presented classifications of unintentional and intentional attacks that can be performed on audio watermarking systems and we have highlighted the impact of these attacks on the watermarked audio quality. We have presented two classifications made by researchers, the first one categorizes these attacks into basic and advanced attacks, while the second one classifies the attacks by group according to the process performed on the watermarked audio file. Furthermore, after presenting an overview of the properties of the Human Auditory System (HAS), we have presented several evaluation aspects of audio watermarking systems and we have reviewed various recent robust and imperceptible audio watermarking methods in the spatial, transform and hybrid domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. In 1883, Auguste Kerckhoffs enunciated the first principles of cryptographic engineering, in which he advises that we assume the method used to encipher data is known to the opponent, so security must lie only in the choice of key. The history of cryptology since then has repeatedly shown the folly of ‘security-by-obscurity’ – the assumption that the enemy will remain ignorant of the system in use.

References

  1. **ang Y, Natgunanathan I, Peng D, Hua G, Liu B (2018) Spread spectrum audio watermarking using multiple orthogonal PN sequences and variable embedding strengths and polarities. IEEEACM Trans Audio Speech Lang Process 26:529–539

    Article  Google Scholar 

  2. Natgunanathan I, **ang Y, Hua G, Beliakov G, Yearwood J (2017) Patchwork-based multilayer audio watermarking. IEEEACM Trans Audio Speech Lang Process 25(11):2176–2187

    Article  Google Scholar 

  3. Dubey SK, Chandra V (2017) Steganography, cryptography and watermarking: a review. Int J Innov Res Sci Eng Technol 6:2595–2599. https://doi.org/10.15680/IJIRSET.2017.0602076.2595

    Article  Google Scholar 

  4. Xu H, Kang X, Chen Y, Wang Y (2019) Rotation and scale invariant image watermarking based on polar harmonic transforms. Opt 183:401–414

    Google Scholar 

  5. Roy R, Ahmed T, Changder S (2018) Watermarking through image geometry change tracking. Vis Inform 2(2):125–135. https://doi.org/10.1016/j.visinf.2018.03.001

    Article  Google Scholar 

  6. Hwang M-J, Lee J, Lee M, Kang H-G (2018) SVD-based adaptive QIM watermarking on stereo audio signals. IEEE Trans Multimed 20:45–54

    Article  Google Scholar 

  7. Weina W (2017) Digital audio blind watermarking algorithm based on audio characteristic and scrambling encryption. In: IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China. https://doi.org/10.1109/IAEAC.2017.8054203

  8. Fares K, Amine K, Salah E (2020) A robust blind color image watermarking based on Fourier transform domain. Optik 208:164562. https://doi.org/10.1016/j.ijleo.2020.164562

    Article  Google Scholar 

  9. Amine K, Fares K, Redouane KM, Salah E (2022) Medical image watermarking for telemedicine application security. J Circuits Syst Comput 31(05):2250097. https://doi.org/10.1142/S0218126622500979

    Article  Google Scholar 

  10. Liu Z, Huang Y, Huang J (2019) Patchwork-based audio watermarking robust against de-synchronization and recapturing attacks. IEEE Trans Inf Forensics Secur 14(5):1171–1180

    Article  Google Scholar 

  11. Kahlessenane F, Khaldi A, Kafi R, Euschi S (2021) A DWT based watermarking approach for medical image protection. J Ambient Intell Humaniz Comput 12(2):2931–2938. https://doi.org/10.1007/s12652-020-02450-9

    Article  Google Scholar 

  12. Ahmadi SBB, Zhang G, Wei S, Boukela L (2021) An intelligent and blind image watermarking scheme based on hybrid SVD transforms using human visual system characteristics. Vis Comput 37(2):385–409. https://doi.org/10.1007/s00371-020-01808-6

    Article  Google Scholar 

  13. Pexaras K, Karybali G, Kalligeros E (2019) Optimization and hardware implementation of image and video watermarking for low-cost applications. IEEE Trans Circuits Syst 66:2088–2101

    Article  Google Scholar 

  14. Manikandan VM, Masilamani V (2018) Histogram shifting-based blind watermarking scheme for copyright protection in 5G. Comput Electr Eng 72:614–630. https://doi.org/10.1016/j.compeleceng.2018.03.007

    Article  Google Scholar 

  15. Kahlessenane F, Khaldi A, Kafi MR, Zermi N, Euschi S (2021) A value parity combination based scheme for retinal images watermarking. Opt Quantum Electron 53(3):161. https://doi.org/10.1007/s11082-021-02793-3

    Article  Google Scholar 

  16. Zermi N, Khaldi A, Kafi MR, Kahlessenane F, Euschi S (2022) An SVD values ordering scheme for medical image watermarking. Cybern Syst 53(3):282–297. https://doi.org/10.1080/01969722.2021.1983700

    Article  Google Scholar 

  17. Hua G, Huang J, Shi YQ, Goh J, Thing VLL (2016) Twenty years of digital audio watermarking - a comprehensive review. Signal Process 128:222–242. https://doi.org/10.1016/j.sigpro.2016.04.005

    Article  Google Scholar 

  18. Singh P, Chadha RS (2013) A survey of digital watermarking techniques, applications and attacks. Int J Eng Innov Technol IJEIT 42(2):128–132

  19. Lalitha NV, Rao CS, Jaya Sree PVY (2020) A review of digital audio watermarking schemes. J Crit Rev 7(7):870–880 (ISSN-2394-5125)

    Google Scholar 

  20. Tewari TK, Saxena V, Gupta JP (2011) Audio watermarking: current state of art and future objectives. Int J Digit Content Technol Appl 5(7):306–314

    Google Scholar 

  21. Hussein E, Belal MA (2012) Digital watermarking techniques, applications and attacks applied to digital media: a survey. IJERT 1(7):2278–118 (ISSN 2278-0118)

    Google Scholar 

  22. Kahlessenane F, Khaldi A, Kafi MR, Euschi S (2021) A color value differentiation scheme for blind digital image watermarking. Multimed Tools Appl 80(13):19827–19844. https://doi.org/10.1007/s11042-021-10713-6

    Article  Google Scholar 

  23. Wang J, Healy R, Timoney J (2011) A robust audio watermarking scheme based on reduced singular value decomposition and distortion removal. Signal Process 91(8):1693–1708. https://doi.org/10.1016/j.sigpro.2011.01.014

    Article  Google Scholar 

  24. Kumar S, Singh BK, Yadav M (2020) A recent survey on multimedia and database watermarking. Multimed Tools Appl 79:20149–20197. https://doi.org/10.1007/s11042-020-08881-y

    Article  Google Scholar 

  25. Wazirali R, Ahmad R, Al-Amayreh A, Al-Madi M, Khalifeh A (2021) Secure watermarking schemes and their approaches in the IoT technology: an overview. Electron 10:1744. https://doi.org/10.3390/electronics10141744

    Article  Google Scholar 

  26. Steinebach M et al (2002) StirMark Benchmark: Audio watermarking attacks. In: Int. Conference on Information Technology: Coding and Computing (ITCC 2001), April 2 - 4, Las Vegas, Nevada, S. 49 - 54, ISBN 0-7695-1062-0,2001. https://doi.org/10.1109/ITCC.2001.918764

  27. Zaidi A, Boyer R, Duhamel P (2006) Audio watermarking under desynchronization and additive noise attacks. IEEE Trans Signal Process 54(2):570–584. https://doi.org/10.1109/TSP.2005.861106

    Article  Google Scholar 

  28. Robert A, Picard J (2005) On the use of masking models for image and audio watermarking. IEEE Trans Multimed 7(4):727–739. https://doi.org/10.1109/TMM.2005.846781

    Article  Google Scholar 

  29. Doerr G, Dugelay J-L, Kirovski D (2006) On the need for signal-coherent watermarks. IEEE Trans Multimed 8(5):896–904. https://doi.org/10.1109/TMM.2006.879917

    Article  Google Scholar 

  30. Kirovski D, Petitcolas FAP, Landau Z (2007) The replacement attack. IEEE Trans Audio Speech Lang Process 15(6):1922–1931. https://doi.org/10.1109/TASL.2007.900088

    Article  Google Scholar 

  31. Lin Y, Abdulla WH (2015) Audio watermarking techniques. In: Audio Watermark A Comprehensive Foundation Using MATLAB, Springer Cham Heidelberg New York Dordrecht London. https://doi.org/10.1007/978-3-319-07974-5

  32. Liew P, Armand M (2007) Inaudible watermarking via phase manipulation of random frequencies. Multimed Tools Appl 353:357–377

    Article  Google Scholar 

  33. Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Syst J 35:313–336. https://doi.org/10.1147/sj.353.0313

    Article  Google Scholar 

  34. Zwicker E, Fastl H (1990) Psychoacoustics: facts and models. Springer-Verlag, New York

    Google Scholar 

  35. Herre J, Dick S (2019) Psychoacoustic models for perceptual audio coding—a tutorial review. Appl Sci 9(14):14. https://doi.org/10.3390/app9142854

    Article  Google Scholar 

  36. **ang Y, Hua G, Yan B (2017). Human auditory system and perceptual quality measurement. In: Digital audio watermarking. SpringerBriefs in electrical and computer engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-4289-8_2

  37. RECOMMENDATION ITU-R BS.1387-1 - Method for objective measurements of perceived audio quality (2002) Available: https://www.semanticscholar.org/paper/RECOMMENDATION-ITU-R-BS.1387-1-Method-for-objective/8097f3021845e9656ca452ba4f0acc65de2b8ffd. Accessed 21 Apr 2023

  38. **an Y, Peng D, Natgunanathan I, Zhou W (2011) Effective pseudonoise sequence and decoding function for imperceptibility and robustness enhancement in time-spread echo-based audio watermarking. IEEE Trans Multimed 131:2–13

    Article  Google Scholar 

  39. Ko B-S, Nishimura R, Suzuki Y (2005) Time-spread echo method for digital audio watermarking. IEEE Trans Multimed 7(2):212–221. https://doi.org/10.1109/TMM.2005.843366

    Article  Google Scholar 

  40. Lu Z-M, Yan B, Sun S-H (2005) Watermarking combined with CELP speech coding for authentication. IEICE Trans Inf Syst E88-D(2):330–334

    Article  Google Scholar 

  41. Boley J, Lester M (2009) Statistical Analysis of ABX Results Using Signal Detection Theory, presented at the Audio Engineering Society Convention 127, Audio Engineering Society. https://www.aes.org/e-lib/online/browse.cfm?elib=15022. Accessed 04 Nov 2021

  42. Kleijn WB, Paliwal KK (1995) Speech coding and synthesis. Elsevier Science Inc., New York

    Google Scholar 

  43. ITU-T (1996) Recommendation p.800: Methods for objective and subjective assessment of quality. http://www.itu.int/. Accessed 09/21/2023

  44. Yi Hu, Loizou PC (2008) Evaluation of objective quality measures for speech enhancement. IEEE Trans Audio Speech Lang Process 16(1):229–238. https://doi.org/10.1109/TASL.2007.911054

    Article  Google Scholar 

  45. Huber R, Kollmeier B (2006) PEMO-Q: a new method for objective audio quality assessment using a model of auditory perception. IEEE Trans Audio Speech Lang Process 146:1902–1911

    Article  Google Scholar 

  46. Treurniet WC, Soulodre GA (2000) Evaluation of the ITU-R objective audio quality measurement method. J Audio Eng Soc 48(3):164–173

    Google Scholar 

  47. **ang Y, Natgunanathan I, Guo S, Zhou W, Nahavandi S (2014) Patchwork-based audio watermarking method robust to de-synchronization attacks. IEEEACM Trans Audio Speech Lang Process 229:1413–1423

    Article  Google Scholar 

  48. Kalantari NK, Akhaee MA, Ahadi SM, Amindavar H (2009) Robust multiplicative patchwork method for audio watermarking. IEEE Trans Audio Speech Lang Process 176:1133–1141

    Article  Google Scholar 

  49. **ang Y, Natgunanathan I, Peng D, Zhou W, Yu S (2012) A dual-channel time-spread echo method for audio watermarking. In: IEEE Transactions on Information Forensics and Security, pp 383–392. https://doi.org/10.1109/TIFS.2011.2173678

  50. Dhar PK, Shimamura T (2014) Audio watermarking in transform domain based on singular value decomposition and Cartesian-polar transformation. Int J Speech Technol 17(2):133–144. https://doi.org/10.1007/s10772-013-9214-4

    Article  Google Scholar 

  51. Khaldi K, Boudraa A-O (2013) Audio watermarking via EMD. IEEE Trans Audio Speech Lang Process 21(3):675–680. https://doi.org/10.1109/TASL.2012.2227733

    Article  Google Scholar 

  52. Bhat V, Sengupta I, Das A (2010) An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digit Signal Process 20(6):1547–1558

    Article  Google Scholar 

  53. Feng LP, Zheng LB, Cao P (2010) A DWT-DCT based blind watermarking algorithm for copyright protection. In: 2010 3rd International Conference on Computer Science and Information Technology, pp 455–458. https://doi.org/10.1109/ICCSIT.2010.5565101

  54. Zermi N, Khaldi A, Kafi MR, Kahlessenane F, Euschi S (2021) A lossless DWT-SVD domain watermarking for medical information security. Multimed Tools Appl 80(16):24823–24841. https://doi.org/10.1007/s11042-021-10712-7

    Article  Google Scholar 

  55. Chowdhury A, Khan MI (2013) A tutorial for audio watermarking in the cepstrum domain. Smart Comput Rev 3(5). https://doi.org/10.6029/smartcr.2013.05.003

  56. Cox IJ, Kilian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687. https://doi.org/10.1109/83.650120

    Article  Google Scholar 

  57. Hua G, Goh J, Thing VLL (2015) Time-spread echo-based audio watermarking with optimized imperceptibility and robustness. IEEEACM Trans Audio Speech Lang Process 23(2):227–239. https://doi.org/10.1109/TASLP.2014.2387385

    Article  Google Scholar 

  58. Raynal F, Petitcolas FAP, Fontaine C (2001) Automatic evaluation of watermarking schemes Évaluation automatique des méthodes de tatouage. Trait Signal — Vol. 18 — N 4 — Spéc. 2001

  59. Petitcolas FAP (2000) Watermarking schemes evaluation. IEEE Signal Process Mag 17(5):58–64. https://doi.org/10.1109/79.879339

    Article  Google Scholar 

  60. Guillot P (2013) Auguste Kerckhoffs et la cryptographie militaire. Bibnum Textes Fond Sci. https://doi.org/10.4000/bibnum.555

    Article  Google Scholar 

  61. Lee J-H (1999) Fingerprinting. In: Information hiding techniques for steganography and digital watermarking, Artech house Books.in Hardcover, approx. 220 pages. Artech House Books, pp 175–190

  62. Mintzer F, Braudaway GW (1999) If one watermark is good, are more better?. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), vol. 4, pp 2067–2069. https://doi.org/10.1109/ICASSP.1999.758338

  63. Mushgil BM, Adnan WAW, Al-hadad SA-R, Ahmad SMS (2018) An efficient selective method for audio watermarking against de-synchronization attacks. J Electr Eng Technol 13(1):476–484. https://doi.org/10.5370/JEET.2018.13.1.476

    Article  Google Scholar 

  64. Mun S-M, Nam S-H, Jang H, Kim D, Lee H-K (2019) Finding robust domain from attacks: a learning framework for blind watermarking. Neurocomputing 337:191–202. https://doi.org/10.1016/j.neucom.2019.01.067

    Article  Google Scholar 

  65. Khaldi A, Kafi MR, Moad MS (2022) Wrap** based curvelet transform approach for ECG watermarking in telemedicine application. Biomed Signal Process Control 75:103540. https://doi.org/10.1016/j.bspc.2022.103540

    Article  Google Scholar 

  66. Sadeghi M, Toosi R, Akhaee MA (2019) Blind gain invariant image watermarking using random projection approach. Signal Process 163:213–224. https://doi.org/10.1016/j.sigpro.2019.05.026

    Article  Google Scholar 

  67. Kahlessenane F, Khaldi A, Kafi R, Euschi S (2021) A robust blind medical image watermarking approach for telemedicine applications. Clust Comput 24(3):2069–2082

    Article  Google Scholar 

  68. Hosny A, Wael A, Murtada M (2018) Improving LSB audio steganography using simulated annealing for satellite telemetry. In: 14th International Computer Engineering Conference, Cairo, Egypt, Egypt, Cairo, Egypt. https://doi.org/10.1109/ICENCO.2018.8636147

  69. Kundu N, Kaur A (2017) A secure approach to audio steganography. Int J Eng Trends Technol 44. https://doi.org/10.35940/ijrte.C4456.098319

  70. Devi R, Pugazhenthib D (2016) Ideal sampling rate to reduce distortion in audio steganography. In: International Conference on Computational Modeling and Security, Tamil Nadu, India. https://doi.org/10.1016/j.procs.2016.05.185

  71. Salah E, Amine K, Redouane KM, Fares K (2021) Spatial and frequency approaches for audio file protection. J Circuits Syst Comput 30(12):2150210. https://doi.org/10.1142/S0218126621502108

    Article  Google Scholar 

  72. Nejad MY, Mosleh M, Heikalabad SR (2019) An LSB-based quantum audio watermarking using MSB as arbiter. Int J Theor Phys 58(11):3828–3851. https://doi.org/10.1007/s10773-019-04251-z

    Article  Google Scholar 

  73. Nejad MY, Mosleh M, Heikalabad SR (2020) An enhanced LSB-based quantum audio watermarking scheme for nano communication networks. Multimed Tools Appl 79(35):26489–26515. https://doi.org/10.1007/s11042-020-09326-2

    Article  Google Scholar 

  74. Fan T-Y, Chao H-C, Chieu B-C (2019) Lossless medical image watermarking method based on significant difference of cellular automata transform coefficient. Signal Process Image Commun 70:174–183. https://doi.org/10.1016/j.image.2018.09.015

    Article  Google Scholar 

  75. Moad MS, Kafi MR, Khaldi A (2022) A non-subsampled Shearlet transform based approach for heartbeat sound watermarking. Biomed Signal Process Control 71:103114. https://doi.org/10.1016/j.bspc.2021.103114

    Article  Google Scholar 

  76. Podilchuk CI, Delp EJ (2001) Digital watermarking: algorithms and applications. IEEE Signal Process Mag 18(4):33–46. https://doi.org/10.1109/79.939835

    Article  Google Scholar 

  77. Cox IJ, Kilian J, Leighton T, Shamoon T (1996) Secure spread spectrum watermarking for images, audio and video. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp 243–246. https://doi.org/10.1109/ICIP.1996.560429

  78. Cvejic N, Seppanen T (2003) Robust audio watermarking in wavelet domain using frequency hop** and patchwork method. In: 3rd International symposium on image and signal processing and analysis, 2003. ISPA 2003. Proceedings of the, vol. 1. IEEE, pp 1– 255, Rome, Italy

  79. Abdelwahab K, Saied M, El-Shafai W, El-Rabaie S, Abd El-Samie FE (2019) Efficient SVD-based audio watermarking technique in FRT domain. Multimed Tools Appl 10:20. https://doi.org/10.1007/s11042-019-08023-z

    Article  Google Scholar 

  80. Ortiz A, Feregrino-Uribe C, Garcia-Hernandez J (2019) Framework for audio reversible watermarking robust against content replacement with signal restoration capabilities. J Frankl Inst 356(12):6793–6816

    Article  MathSciNet  Google Scholar 

  81. Hu H, Lee T (2019) High-performance self-synchronous blind audio watermarking in a unified FFT framework. IEEE Access 7:19063–19076

    Article  Google Scholar 

  82. Seyed M, Mosleh M, Erfani Y (2019) Audio watermarking based on synergy between Lucas regular sequence and Fast Fourier Transform. Multimed Tools Appl 78:22883–22908

    Article  Google Scholar 

  83. Electa Alice Jayarani A, Bhatt MR, Geetha DD (2018) Zero watermarking on audio based on STFT. In: 2018 International Conference on Computing, Electronics Communications Engineering (iCCECE), pp 253–256. https://doi.org/10.1109/iCCECOME.2018.8658846

  84. Salah E, Amine K, Redouane K, Fares K (2021) A Fourier transform based audio watermarking algorithm. Appl Acoust 172:107652. https://doi.org/10.1016/j.apacoust.2020.107652

    Article  Google Scholar 

  85. Irawati ID, Budiman G, Ramdhani F (2019) QR-based watermarking in audio sub band using DCT. In: 2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC). https://doi.org/10.1109/ICCEREC.2018.8712108

  86. Karajeh H, Maqableh M (2019) An imperceptible, robust, and high payload capacity audio watermarking scheme based on the DCT transformation and Schur decomposition. Analog Integr Circuits Signal Process 99:571–583. https://doi.org/10.1007/s10470-018-1332-0

    Article  Google Scholar 

  87. Xue Y, Mu K, Wang Y, Chen Y, Zhong P, Wen J (2019) Robust speech steganography using differential SVD. IEEE Access 7:153724–153733. https://doi.org/10.1109/ACCESS.2019.2948946

    Article  Google Scholar 

  88. Salah E, Amine K, Redouane K, Fares K (2021) Chapter : a value parity combination-based scheme for heartbeat sounds protection. In: Internet of Things Energy, Industry, and Healthcare. CRC Press. https://doi.org/10.1201/9781003140443-4

  89. Yuan X, Li M (2020) Gram–Schmidt orthogonalization-based audio multiple watermarking scheme. Circuits Syst Signal Process 39(8):3958–3977. https://doi.org/10.1007/s00034-020-01347-4

    Article  Google Scholar 

  90. Kanhe A, Gnanasekaran A (2018) Robust image-in-audio watermarking technique based on DCT-SVD transform. EURASIP J Audio Speech Music Process 2018(1):16. https://doi.org/10.1186/s13636-018-0139-3

    Article  Google Scholar 

  91. Jiang W, Huang X, Quan Y (2019) Audio watermarking algorithm against synchronization attacks using global characteristics and adaptive frame division. Signal Process 162:153–160. https://doi.org/10.1016/j.sigpro.2019.04.017

    Article  Google Scholar 

  92. Saadi S, Merrad A, Benziane A (2019) Novel secured scheme for blind audio/speech norm-space watermarking by Arnold algorithm. Signal Process 154:74–86. https://doi.org/10.1016/j.sigpro.2018.08.011

    Article  Google Scholar 

  93. Kaur A, Dutta MK (2018) A blind watermarking algorithm for audio signals in multi-resolution and singular value decomposition. In: 2018 4th International Conference on Computational Intelligence Communication Technology (CICT), pp 1–5. https://doi.org/10.1109/CIACT.2018.8480367

  94. Hwai-Tsu Hu, Chang J-R, Lin S-J (2018) Synchronous blind audio watermarking via shape configuration of sorted LWT coefficient magnitudes. Signal Process 147:190–202. https://doi.org/10.1016/j.sigpro.2018.02.001

    Article  Google Scholar 

  95. Nair U, Birajdar GK (2020) Compressed domain secure, robust and high-capacity audio watermarking. Iran J Comput Sci 3(4):217–232. https://doi.org/10.1007/s42044-020-00059-x

    Article  Google Scholar 

  96. Singha A, Ullah MA (2022) Development of an audio watermarking with decentralization of the watermarks. J King Saud Univ - Comput Inf Sci 34(6, Part A):3055–3061. https://doi.org/10.1016/j.jksuci.2020.09.007

    Article  Google Scholar 

  97. Alshathri S, Hemdan EE-D (2023) An efficient audio watermarking scheme with scrambled medical images for secure medical internet of things systems. Multimed Tools Appl 82(13):20177–20195. https://doi.org/10.1007/s11042-023-14357-6

    Article  Google Scholar 

  98. Dhar PK, Shimamura T (2013) An SVD-based audio watermarking using variable embedding strength and exponential-log operations. In: 2013 International Conference on Informatics, Electronics and Vision (ICIEV), pp 1–6. https://doi.org/10.1109/ICIEV.2013.6572572

  99. Özer H, Sankur B, Memon N (2005) An SVD-based audio watermarking technique. In: Proceedings of the 7th workshop on Multimedia and security, in MM&Sec ’05. New York, NY, USA: Association for Computing Machinery, pp 51–56. https://doi.org/10.1145/1073170.1073180

  100. Bhat K V, Sengupta I, Das A (2011) An audio watermarking scheme using singular value decomposition and dither-modulation quantization. Multimed Tools Appl 52(2):369–383. https://doi.org/10.1007/s11042-010-0515-1

    Article  Google Scholar 

  101. Lei B, Soon IY, Tan E-L (2013) Robust SVD-based audio watermarking scheme with differential evolution optimization. IEEE Trans Audio Speech Lang Process 21(11):2368–2378. https://doi.org/10.1109/TASL.2013.2277929

    Article  Google Scholar 

  102. Al-Nuaimy W et al (2011) An SVD audio watermarking approach using chaotic encrypted images. Digit Signal Process 21(6):764–779. https://doi.org/10.1016/j.dsp.2011.01.013

    Article  Google Scholar 

  103. Nematollahi MA, Al-Haddad SAR, Zarafshan F (2015) Blind digital speech watermarking based on Eigen-value quantization in DWT. J King Saud Univ - Comput Inf Sci 27(1):58–67. https://doi.org/10.1016/j.jksuci.2014.03.012

    Article  Google Scholar 

  104. Dhar PK, Shimamura T (2015) Advances in audio watermarking based on singular value decomposition, SpringerBriefs in Electrical and Computer Engineering. https://doi.org/10.1007/978-3-319-14800-7_5

  105. Dey N, Biswas D, Roy AB, Das A, Chaudhuri SS (2012) DWT-DCT-SVD based blind watermarking technique of gray image in electrooculogram signal. In: 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), pp 680–685. https://doi.org/10.1109/ISDA.2012.6416619

  106. Wang X-Y, Niu P-P, Yang H-Y (2009) A robust digital audio watermarking based on statistics characteristics. Pattern Recognit 42(11):3057–3064. https://doi.org/10.1016/j.patcog.2009.01.015

    Article  Google Scholar 

  107. Wang X-Y, Zhao H (2006) A novel synchronization invariant audio watermarking scheme based on DWT and DCT. IEEE Trans Signal Process 54(12):4835–4840. https://doi.org/10.1109/TSP.2006.881258

    Article  Google Scholar 

  108. Merrad A, Saadi S (2018) Blind speech watermarking using hybrid scheme based on DWT/DCT and sub-sampling. Multimed Tools Appl 77(20):27589–27615. https://doi.org/10.1007/s11042-018-5939-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Khaldi.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, E., Narima, Z., Khaldi, A. et al. Survey of imperceptible and robust digital audio watermarking systems. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18969-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-18969-4

Keywords

Navigation