Log in

Lightweight underwater object detection based on image enhancement and multi-attention

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Underwater object detection, which is crucial to the exploration and exploitation of marine resources, remains a challenge because noisy, weak contrast, and color distorted images are provided as sources of supervision. To address the issues of low detection accuracy caused by imprecise images, and inefficiency due to huge amount of parameters in most deep neural networks, this paper proposed a novel lightweight deep learning model with image enhancement and multi-attention. First, image enchancement algorithm MSRCR is applied to enhance image quality in order to improve the training effect of deep learning model. Then, YOLOX is used as baseline model and GhostNet is utilized as backbone network in order to reduce computation budget. Finally, a multi-attention module LCR considering level, channel and spatial domains is divised and integrated into the feature pyramid network to enhance feature learning ability and detection accuracy. Experimental result shows that on the considered datasets our model achieves an mAP of 77.32\(\%\) and a size of 18.5MB, 1.25\(\%\) higher and 46.4\(\%\) less than the values of baseline network, indicating that our method achieves a superior detection precison while kee** model lighweight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All evaluation datasets in our experiments are public datasets and they are available online.

References

  1. Abdullah-Al-Wadud M, Kabir MH, Akber Dewan MA et al (2007) A dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 53(2):593–600. https://doi.org/10.1109/TCE.2007.381734

    Article  Google Scholar 

  2. Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: optimal speed and accuracy of object detection. ar**v:2004.10934

  3. Chen L, Liu ZH, Tong L et al (2020) Underwater object detection using invert multi-class adaboost with deep learning. In: International joint conference on neural networks (IJCNN), pp 1–8. https://doi.org/10.1109/IJCNN48605.2020.9207506

  4. Dai X, Chen Y, **ao B et al (2021) Dynamic head: unifying object detection heads with attentions. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 7369–7378. https://doi.org/10.1109/CVPR46437.2021.00729

  5. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 886–893. https://doi.org/10.1109/CVPR.2005.177

  6. Ell TA, Sangwine SJ (2007) Hypercomplex fourier transforms of color images. IEEE Trans Image Process 16(1):22–35. https://doi.org/10.1109/TIP.2006.884955

    Article  MathSciNet  Google Scholar 

  7. Fayaz S, Shabir AParah, Qureshi G (2022) Underwater object detection: architectures and algorithms – a comprehensive review. Multimed Tools Appl 81:20,871–20,916. https://doi.org/10.1007/s11042-022-12502-1

  8. Felzenszwalb PF, Girshick RB, McAllester D et al (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645. https://doi.org/10.1109/TPAMI.2009.167

    Article  Google Scholar 

  9. Fu X, Zhuang P, Huang Y et al (2014) A retinex-based enhancing approach for single underwater image. In: IEEE International conference on image processing (ICIP), pp 4572–4576. https://doi.org/10.1109/ICIP.2014.7025927

  10. Ge Z, Liu ST, Wang F et al (2021) Yolox: exceeding yolo series in 2021. ar**v:2107.08430

  11. Girshick R (2012) From rigid templates to grammars: object detection with structured models. PhD thesis, USA

  12. Girshick R (2015) Fast r-cnn. In: IEEE International conference on computer vision (ICCV), pp 1440–1448. https://doi.org/10.1109/ICCV.2015.169

  13. Girshick R, Donahue J, Darrell T et al (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 580–587. https://doi.org/10.1109/CVPR.2014.81

  14. Han K, Wang YH, Tian Q et al (2020) Ghostnet: more features from cheap operations. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 1577–1586. https://doi.org/10.1109/CVPR42600.2020.00165

  15. He K, Zhang X, Ren S et al (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916. https://doi.org/10.1109/TPAMI.2015.2389824

    Article  Google Scholar 

  16. Holt B, Jones C (2017) Detection of marine slicks with sar: scientific and experimental legacy of werner alpers, his students and colleagues. In: 2017 IEEE International geoscience and remote sensing symposium (IGARSS), pp 1480–1483. https://doi.org/10.1109/IGARSS.2017.8127247

  17. Howard A, Sandler M, Chen B et al (2019) Searching for mobilenetv3. In: IEEE/CVF International conference on computer vision (ICCV), pp 1314–1324. https://doi.org/10.1109/ICCV.2019.00140

  18. Howard AG, Zhu M, Chen B et al (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. ar**v:1704.04861

  19. Hu J, Shen L, Albanie S et al (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  20. Kaur J, Williamjeet S (2023) A systematic review of object detection from images using deep learning. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023-15981-y

    Article  Google Scholar 

  21. Khan R, Yang Y, Liu Q et al (2021) Deep image enhancement for ill light imaging. Journal of the Optical Society of America A, pp 827–839. https://doi.org/10.1364/josaa.410316

  22. Li CY, Guo CL, Ren WQ et al (2020) An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process 29:4376–4389. https://doi.org/10.1109/TIP.2019.2955241

    Article  Google Scholar 

  23. Li J, Pan Z, Liu Q et al (2022) Complementarity-aware attention network for salient object detection. IEEE Transactions on Cybernetics 52(2):873–886. https://doi.org/10.1109/TCYB.2020.2988093

    Article  Google Scholar 

  24. Li X, Lv CQ, Wang WH et al (2022) Generalized focal loss: towards efficient representation learning for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp 1–14. https://doi.org/10.1109/TPAMI.2022.3180392

  25. Lin J, Miao ZJ (2016) Research on the illumination robust of target recognition. In: IEEE International conference on signal processing (ICSP), pp 811–814. https://doi.org/10.1109/ICSP.2016.7877943

  26. Lin WH, Zhong JX, Liu S et al (2020) Roimix: proposal-fusion among multiple images for underwater object detection. In: IEEE International conference on acoustics, speech and signal processing (ICASSP), pp 2588–2592. https://doi.org/10.1109/ICASSP40776.2020.9053829

  27. Liu S, Qi L, Qin H et al (2018) Path aggregation network for instance segmentation. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 8759–8768. https://doi.org/10.1109/CVPR.2018.00913

  28. Liu W, Dragomir A, Dumitru E et al (2016) Ssd: single shot multibox detector. In: European conference on computer vision (ECCV), pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2

  29. Ma NN, Zhang XY, Zheng HT (2018) Shufflenet v2: practical guidelines for efficient cnn architecture design. In: European conference on computer vision (ECCV), pp 122–138. https://doi.org/10.1007/978-3-030-01264-9_8

  30. Miloslavich P, Seeyave S, Muller-Karger F et al (2019) Challenges for global ocean observation: the need for increased human capacity. Journal of Operational Oceanography 12(sup2):S137–S156. https://doi.org/10.1080/1755876X.2018.1526463

    Article  Google Scholar 

  31. Moroni D, Pieri G, Salvetti O et al (2015) Proactive marine information system for environmental monitoring. In: OCEANS 2015 - Genova, pp 1–5. https://doi.org/10.1109/OCEANS-Genova.2015.7271533

  32. Nascimento T, Gama S (2017) Fisheye: marine species’ recognition and visualization. In: 2017 24\(^{\circ }\) Encontro Português de Computação Gráfica e Interação (EPCGI), pp 1–8. https://doi.org/10.1109/EPCGI.2017.8124307

  33. Parthasarathy S, Sankaran P (2012) An automated multi scale retinex with color restoration for image enhancement. In: National conference on communications (NCC), pp 1–5. https://doi.org/10.1109/NCC.2012.6176791

  34. Rahman Z, Jobson D, Woodell G (1996) Multi-scale retinex for color image enhancement. In: IEEE International conference on image processing (ICIP), pp 1003–1006. https://doi.org/10.1109/ICIP.1996.560995

  35. Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 6517–6525. https://doi.org/10.1109/CVPR.2017.690

  36. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. ar**v:1804.02767

  37. Redmon J, Divvala S, Girshick R et al (2016) You only look once: unified, real-time object detection. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 779–788. https://doi.org/10.1109/CVPR.2016.91

  38. Ren S, He K, Girshick R et al (2017) Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  39. Sandler M, Howard A, Zhu M et al (2018) Mobilenetv2: inverted residuals and linear bottlenecks. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 4510–4520. https://doi.org/10.1109/CVPR.2018.00474

  40. Shen X, Sun X, Wang H et al (2023) Multi-dimensional, multi-functional and multi-level attention in yolo for underwater object detection. Neural Computing and Applications 35(27):19,935-19,960. https://doi.org/10.1007/s00521-023-08781-w

  41. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. ar**v:1409.1556

  42. Viola P, Jones M (2004) Robust real-time face detection. In: International journal of computer vision (IJCV), pp 137–154

  43. Wang Y, Song W, Fortino G et al (2019) An experimental-based review of image enhancement and image restoration methods for underwater imaging. IEEE Access 7:140,233-140,251. https://doi.org/10.1109/ACCESS.2019.2932130

  44. Woo SY, Park J, Lee JY et al (2018) Cbam: convolutional block attention module. In: European conference on computer vision (ECCV), pp 3–19. https://doi.org/10.1007/978-3-030-01234-2_1

  45. Xu C, Wang H, Liu X et al (2023) Bi-attention network for bi-directional salient object detection. Appl Intell. https://doi.org/10.1007/s10489-023-04648-8

    Article  Google Scholar 

  46. Xu XJ, Wang YR, Yang GS et al (2016) Image enhancement method based on fractional wavelet transform. In: IEEE International conference on signal and image processing (ICSIP), pp 194–197. https://doi.org/10.1109/SIPROCESS.2016.7888251

  47. Yang A, Liu Y, Cheng S et al (2023) Spatial attention-guided deformable fusion network for salient object detection. Multimedia Syst. https://doi.org/10.1007/s00530-023-01152-4

    Article  Google Scholar 

  48. Yeh CH, Lin CH, Kang LW et al (2021) Lightweight deep neural network for joint learning of underwater object detection and color conversion. IEEE Transactions on Neural Networks and Learning Systems, pp 1–15. https://doi.org/10.1109/TNNLS.2021.3072414

  49. Zhang XY, Zhou XY, Lin MX et al (2018) Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 6848–6856. https://doi.org/10.1109/CVPR.2018.00716

  50. Zhou Y, Chen SC, Wang YM et al (2020) Review of research on lightweight convolutional neural networks. In: IEEE Information technology and mechatronics engineering conference (ITOEC), pp 1713–1720. https://doi.org/10.1109/ITOEC49072.2020.9141847

  51. Zhu X, Lyu S, Wang X et al (2021) Tph-yolov5: improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In: IEEE/CVF International conference on computer vision workshops (ICCVW), pp 2778–2788. https://doi.org/10.1109/ICCVW54120.2021.00312

  52. Zou Z, Chen K, Shi Z et al (2023) Object detection in 20 years: a survey. Proc IEEE 111(3):257–276. https://doi.org/10.1109/JPROC.2023.3238524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixiang Cheng.

Ethics declarations

Competing Interests

The authors declare that they have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Cheng, J., Wu, D. et al. Lightweight underwater object detection based on image enhancement and multi-attention. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-023-18008-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-023-18008-8

Keywords

Navigation