Log in

Deciphering the differential expression patterns of yield-related negative regulators in hexaploid wheat cultivars and hybrids at different growth stages

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Hexaploid bread wheat underwent a series of polyploidization events through interspecific hybridizations that conferred adaptive plasticity and resulted in duplication and neofunctionalization of major agronomic genes. The genetic architecture of polyploid wheat not only confers adaptive plasticity but also offers huge genetic diversity. However, the contribution of different gene copies (homeologs) encoded from different subgenomes (A, B, D) at different growth stages remained unexplored.

Methods

In this study, hybrid of elite cultivars of wheat were developed via reciprocal crosses (cytoplasm swap**) and phenotypically evaluated. We assessed differential expression profiles of yield-related negative regulators in these cultivars and their F1 hybrids and identified various cis-regulatory signatures by employing bioinformatics tools. Furthermore, the preferential expression patterns of the syntenic triads encoded from A, B, and D subgenomes were assessed to decipher their functional redundancy at six different growth stages.

Results

Hybrid progenies showed better heterosis such as up to 17% increase in the average number of grains and up to 50% increase in average thousand grains weight as compared to mid-parents. Based on the expression profiling, our results indicated significant dynamic transcriptional expression patterns, portraying the different homeolog-dominance at the same stage in the different cultivars and their hybrids. Albeit belonging to same syntenic triads, a dynamic trend was observed in the regulatory signatures of these genes that might be influencing their expression profiles.

Conclusion

These findings can substantially contribute and provide insights for the selective introduction of better cultivars into traditional and hybrid breeding programs which can be harnessed for the improvement of future wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors have utilized public databases and tools for data retrieval and analysis. All the databases and tools or software utilized with their access web links have been properly given in the relevant material and methods section for clarity and use by other researchers.

Abbreviations

TGW:

Thousand-grain weight

CKX:

Cytokinin oxidase/dehydrogenase

SL:

Strigolactones

NJ:

Neighbor-joining

miRNAs:

Micro-RNAs

GO:

Gene ontology

TFBS:

Transcriptional factor binding sites

qPCR:

Real-time quantitative PCR

CC:

Cellular component

MF:

Molecular function

BP:

Biological process

CREs:

cis-acting elements

AP2/ERF:

APETALA2/ethylene-responsive element binding factors

SRS:

SHI-related sequence

TD1:

TD-1

Gap:

GA-2002

AUQ:

Auqaab-2000

PCA:

Principal component analysis

PH:

Plant height

SL:

Spike length

LL:

Leaf length

LA:

Flag leaf area

TGP:

Total grains per plant

TGW:

Thousand grains weight

References

  1. Salman-Minkov A, Sabath N, Mayrose I (2016) Whole-genome duplication as a key factor in crop domestication. Nat Plants 2(8):16115. https://doi.org/10.1038/nplants.2016.115

    Article  CAS  PubMed  Google Scholar 

  2. Ramírez-González RH, Borrill P, Lang D et al (2018) The transcriptional landscape of polyploid wheat. Science 361(6403):eaar6089. https://doi.org/10.1126/science.aar6089

    Article  CAS  PubMed  Google Scholar 

  3. Awan MJA, Pervaiz K, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S (2022) Genome edited wheat- current advances for the second green revolution. Biotechnol Adv 60:108006. https://doi.org/10.1016/j.biotechadv.2022.108006

    Article  CAS  PubMed  Google Scholar 

  4. Wang W, Simmonds J, Pan Q et al (2018) Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor Appl Genet 131(11):2463–2475. https://doi.org/10.1007/s00122-018-3166-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64(18):5411–5428. https://doi.org/10.1093/jxb/ert333

    Article  CAS  PubMed  Google Scholar 

  6. Uauy C, Wulff BBH, Dubcovsky J (2017) Combining traditional mutagenesis with New High-Throughput sequencing and genome editing to Reveal Hidden Variation in Polyploid Wheat. Annu Rev Genet 51(1):435–454. https://doi.org/10.1146/annurev-genet-120116-024533

    Article  CAS  PubMed  Google Scholar 

  7. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9(10):2395–2410. https://doi.org/10.1038/nprot.2014.157

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Y, Li Z, Liu G, Jiang Y et al (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci 112(51):15624–15629. https://doi.org/10.1073/pnas.1514547112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yao H, Dogra Gray A, Auger DL, Birchler JA (2013) Genomic dosage effects on heterosis in triploid maize. Proc Natl Acad Sci 110(7):2665–2669. https://doi.org/10.1073/pnas.1221966110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA (2010) Heterosis Plant Cell 22(7):2105–2112. https://doi.org/10.1105/tpc.110.076133

    Article  CAS  PubMed  Google Scholar 

  11. Yu X, Li X, Guo T, Zhu C et al (2016) Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat Plants 2(10):16150. https://doi.org/10.1038/nplants.2016.150

    Article  CAS  PubMed  Google Scholar 

  12. Jaiswal V, Gahlaut V, Mathur S, Agarwal P, Khandelwal MK, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2015) Identification of Novel SNP in promoter sequence of TaGW2-6A Associated with Grain Weight and other agronomic traits in wheat (Triticum aestivum L). PLoS ONE 10(6):e0129400. https://doi.org/10.1371/journal.pone.0129400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630. https://doi.org/10.1038/ng2014

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Zhao J, Song J, Jameson PE (2020) Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnol J 18(3):614–630. https://doi.org/10.1111/pbi.13305

    Article  CAS  PubMed  Google Scholar 

  15. Jameson PE, Song J (2016) Cytokinin: a key driver of seed yield. J Exp Bot 67(3):593–606. https://doi.org/10.1093/jxb/erv461

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Hua L, Gupta A, Tricoli D, Edwards KJ, Yang B, Li W (2019) Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J 17(8):1623–1635. https://doi.org/10.1111/pbi.13088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(7210):195–200. https://doi.org/10.1038/nature07272

    Article  CAS  PubMed  Google Scholar 

  18. Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an Iron-containing protein required for the biosynthesis of Strigolactones, regulates Rice Tiller Bud Outgrowth. Plant Cell 21(5):1512–1525. https://doi.org/10.1105/tpc.109.065987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA (2012) The Arabidopsis Ortholog of Rice DWARF27 acts Upstream of MAX1 in the Control of Plant Development by. Strigolactones Plant Physiol 159(3):1073–1085. https://doi.org/10.1104/pp.112.196253

    Article  CAS  PubMed  Google Scholar 

  20. Zhao B, Wu TT, Ma SS, Jiang DJ, Bie XM, Sui N, Zhang XS, Wang F (2020) TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnol J 18(2):513–525. https://doi.org/10.1111/pbi.13220

    Article  CAS  PubMed  Google Scholar 

  21. Cao S, Xu D, Hanif M, **a X, He Z (2020) Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet 133(6):1811–1823. https://doi.org/10.1007/s00122-020-03562-8

    Article  CAS  PubMed  Google Scholar 

  22. Curtis BC, Croy LI (1958) The Approach Method of making crosses in small Grains1. Agron J 50(1):49–51. https://doi.org/10.2134/agronj1958.00021962005000010015x

    Article  Google Scholar 

  23. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, **a R (2020) TBtools: an integrative Toolkit developed for interactive analyses of big Biological Data. Mol Plant 13(8):1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  24. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35(suppl2):W585–W587. https://doi.org/10.1093/nar/gkm259

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hu B, ** J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297. https://doi.org/10.1093/bioinformatics/btu817

    Article  PubMed  Google Scholar 

  26. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):W39–W49. https://doi.org/10.1093/nar/gkv416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chow C-N, Zheng H-Q, Wu N-Y et al (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 44(D1):D1154–D1160. https://doi.org/10.1093/nar/gkv1035

    Article  CAS  PubMed  Google Scholar 

  28. Racine JS (2012) RStudio: a platform-independent IDE for R and Sweave. J Appl Econ 27:167–172. https://doi.org/10.1002/jae.1278

    Article  Google Scholar 

  29. Zeng L-R, Park CH, Venu RC, Gough J, Wang G-L (2008) Classification, expression pattern, and E3 ligase activity assay of Rice u-box-containing proteins. Mol Plant 1(5):800–815. https://doi.org/10.1093/mp/ssn044

    Article  CAS  PubMed  Google Scholar 

  30. Karamat U, Tabusam J, Khan MKU, Awan MJA, Zulfiqar S, Du W, Farooq MA (2022) Genome-wide identification, characterization, and expression profiling of eukaryotic-specific UBP Family genes in Brassica rapa. J Plant Growth Regul 42(6):3552–3567. https://doi.org/10.1007/s00344-022-10820-0

    Article  CAS  Google Scholar 

  31. Wen C, Zhao Q, Nie J, Liu G, Shen L, Cheng C, ** L, Ma N, Zhao L (2016) Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. Plant Cell Rep 35(5):1053–1070. https://doi.org/10.1007/s00299-016-1938-6

    Article  CAS  PubMed  Google Scholar 

  32. Wu H, Li H, Chen H, Qi Q, Ding Q, Xue J, Ding J, Jiang X, Hou X, Li Y (2019) Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry (Fragaria vesca). BMC Plant Biol 19(1):73. https://doi.org/10.1186/s12870-019-1673-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zou C, Sun K, Mackaluso JD, Seddon AE, ** R, Thomashow MF, Shiu S-H (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci 108(36):14992–14997. https://doi.org/10.1073/pnas.1103202108

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119. https://doi.org/10.1016/j.plantsci.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  35. Feng K, Hou X-L, **ng G-M, Liu J-X, Duan A-Q, Xu Z-S, Li M-Y, Zhuang J, **ong A-S (2020) Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol 40(6):750–776. https://doi.org/10.1080/07388551.2020.1768509

    Article  CAS  PubMed  Google Scholar 

  36. Luo G, Tang Y, Lu Y, Lieberman-Lazarovich M, Ouyang B (2022) Systematic analysis and identification of regulators for SRS genes in Capsicum annuum. Plant Growth Regul 98(1):51–64. https://doi.org/10.1007/s10725-022-00851-8

    Article  CAS  Google Scholar 

  37. Awan MJA, Rasheed A, Saeed NA, Mansoor S (2022) Aegilops tauschii presents a genetic roadmap for hexaploid wheat improvement. Trends Genet 38(4):307–309. https://doi.org/10.1016/j.tig.2022.01.008

    Article  CAS  PubMed  Google Scholar 

  38. **ang D, Quilichini TD, Liu Z et al (2019) The Transcriptional Landscape of Polyploid wheats and their diploid ancestors during embryogenesis and Grain Development. Plant Cell 31(12):2888–2911. https://doi.org/10.1105/tpc.19.00397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: polyploidy and crop plants. Am J Bot 101(10):1711–1725. https://doi.org/10.3732/ajb.1400119

    Article  PubMed  Google Scholar 

  40. Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18(7):411–424. https://doi.org/10.1038/nrg.2017.26

    Article  CAS  PubMed  Google Scholar 

  41. Kondrashov FA (2012) Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Royal Soc B 279(1749):5048–5057. https://doi.org/10.1098/rspb.2012.1108

    Article  Google Scholar 

  42. Dylus DV, Czarkwiani A, Blowes LM, Elphick MR, Oliveri P (2018) Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution. Genome Biol 19(1):26. https://doi.org/10.1186/s13059-018-1402-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bewick AJ, Schmitz RJ (2017) Gene body DNA methylation in plants. Curr Opin Plant Biol 36:103–110. https://doi.org/10.1016/j.pbi.2016.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zilberman D (2017) An evolutionary case for functional gene body methylation in plants and animals. Genome Biol 18(1):87. https://doi.org/10.1186/s13059-017-1230-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kilikevicius A, Meister G, Corey DR (2022) Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res 50(2):617–634. https://doi.org/10.1093/nar/gkab1256

    Article  CAS  PubMed  Google Scholar 

  46. Bewick AJ, Ji L (2016) On the origin and evolutionary consequences of gene body DNA methylation. Proc Natl Acad Sci 113(32):9111–9116. https://doi.org/10.1073/pnas.1604666113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Clarenz O (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. Plos Biol 5(5):e129. https://doi.org/10.1371/journal.pbio.0050129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Buggs RJ, Elliott NM (2010) Tissue-specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus. New Phytol 186(1):175–183. https://doi.org/10.1111/j.1469-8137.2010.03205.x

    Article  CAS  PubMed  Google Scholar 

  49. Jia Z, Gao P (2022) Asymmetric gene expression in grain development of reciprocal crosses between tetraploid and hexaploid wheats. Commun Biol 5(1):1412. https://doi.org/10.1038/s42003-022-04374-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316(5833):1862–1866. https://doi.org/10.1126/science.1143986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Atiq-ur-Rehman (NIBGE), Dr. Muhammad Asif (NIBGE, Faisalabad), Dr. Mudassir Ahmed (NIBGE), Dr. Asma Imran (NIBGE), Dr. Imtiaz (NIBGE), Dr. Fatiha (NIBGE), Dr. Javed Ahmad (AARI, Faisalabad) & Dr. Aziz-ur-Rehman (AARI, Faisalabad) for their technical support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SM, IA, AR, and NAS provided the concept, guidance, resources, and supervised the whole project. MJAA, MAF, RZN, UK, and SARB performed the in-silico data analysis and validation. MJAA, MABW, MAM, and MIB conducted field experiments and collected data. MJAA and RZN conducted the RT-PCR experiments. MAF, UK, and SARB performed the statistical data analysis. MJAA, MAF, RZN, and UK prepared the manuscript. All authors have contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Shahid Mansoor.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Therefore, ethical approval is not applicable.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awan, M.J.A., Farooq, M.A., Naqvi, R.Z. et al. Deciphering the differential expression patterns of yield-related negative regulators in hexaploid wheat cultivars and hybrids at different growth stages. Mol Biol Rep 51, 537 (2024). https://doi.org/10.1007/s11033-024-09454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09454-0

Keywords

Navigation