Log in

MicroRNAs expression in peripheral blood mononuclear cells of patients with multiple sclerosis propose

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

MicroRNAs (miRs) are involved in the autoimmune and neurological diseases, including multiple sclerosis (MS), through modulating post-transcriptional gene regulation. Accumulating evidence indicates that miR-10, miR-24a, miR-124, and miR-21 play an imperative role in MS pathogenesis. Therefore, the current research aimed to analyze the expression of the selected miRNAs for MS in Iranian population.

Methods and Results

Blood sample of 75 relapsing-remitting MS (RRMS) patients and 75 healthy individuals suffering no neurodegenerative illness was collected. Subsequently, the isolation of peripheral blood mononuclear cells (PBMCs) was performed by employing Ficoll-Hypaque density gradient method. Afterward, total RNA was extracted and subjected to qRT-PCR analysis. The obtained results evidenced that the relative expression of miR-10 (P = 0.0002), miR-21 (P = 0.0014), and miR-124 (P = 0.0091) significantly decreased in RRMS patients compared to healthy participants. On the contrary, no notable change was observed between the studies groups regarding miR-24a expression levels (P = 0.107). ROC curve analysis estimated an area under the curve (AUC) value equal to 0.75 with P = 0.0006 for miR-10, while it was decreased for miR-21 (AUC = 0.67 and P = 0.0054) and miR-124 (AUC = 0.66 and P = 0.012).

Conclusion

The change in miR-10, miR-124, and miR-21 expression patterns was implied to participate in MS development. Further large scale observational studies are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due for they are personal data but are available from the corresponding author on reasonable request.

References

  1. Baulina N, Kulakova O, Kiselev I, Osmak G, Popova E, Boyko A et al (2018) Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J Neuroimmunol 317:67–76

    Article  CAS  Google Scholar 

  2. Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L (2012) Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 39(5):6219–6225

    Article  CAS  Google Scholar 

  3. Ma X, Zhou J, Zhong Y, Jiang L, Mu P, Li Y et al (2014) Expression, regulation and function of microRNAs in multiple sclerosis. Int J Med Sci 11(8):810

    Article  Google Scholar 

  4. Duffy CP, McCoy CE (2020) The role of microRNAs in repair processes in multiple sclerosis. Cells 9(7):1711

    Article  CAS  Google Scholar 

  5. Ehya F, Tehrani HA, Garshasbi M, Nabavi SM (2017) Identification of miR-24 and miR-137 as novel candidate multiple sclerosis miRNA biomarkers using multi-staged data analysis protocol. Mol Biology Res Commun 6(3):127

    CAS  Google Scholar 

  6. Ha T-Y (2011) MicroRNAs in human diseases: from autoimmune diseases to skin, psychiatric and neurodegenerative diseases. Immune Netw 11(5):227–244

    Article  Google Scholar 

  7. Mohammed EM (2016) Multiple sclerosis is prominent in the Gulf states. Pathogenesis 3(2):19–38

    Article  Google Scholar 

  8. Mohammed EM (2020) Environmental influencers, microRNA, and multiple sclerosis. J Cent Nerv Syst disease 12:1179573519894955

    Google Scholar 

  9. Milo R, Kahana E (2010) Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun rev 9(5):A387–A94

    Article  CAS  Google Scholar 

  10. Harroud A, Richards JB (2018) Mendelian randomization in multiple sclerosis: a causal role for vitamin D and obesity? Multiple Scler J 24(1):80–85

    Article  CAS  Google Scholar 

  11. Pierrot-Deseilligny C, Souberbielle J-C (2017) Vitamin D and multiple sclerosis: an update. Multiple Scler Relat disorders 14:35–45

    Article  Google Scholar 

  12. Stampanoni Bassi M, Iezzi E, Buttari F, Gilio L, Simonelli I, Carbone F et al (2020) Obesity worsens central inflammation and disability in multiple sclerosis. Multiple Scler J 26(10):1237–1246

    Article  CAS  Google Scholar 

  13. Beecham AH, Patsopoulos NA, **fara DK, Davis MF, Kemppinen A, Cotsapas C et al (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45(11):1353

    Article  CAS  Google Scholar 

  14. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46(4):907–911

    Article  CAS  Google Scholar 

  15. Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M (2017) Epigenetic modifications and therapy in multiple sclerosis. Neuromol Med 19(1):11–23

    Article  CAS  Google Scholar 

  16. Gholamzad M, Ebtekar M, Ardestani MS, Azimi M, Mahmodi Z, Mousavi MJ et al (2019) A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm Res 68(1):25–38

    Article  CAS  Google Scholar 

  17. Teymoori-Rad M, Mozhgani S-H, Zarei-Ghobadi M, Sahraian MA, Nejati A, Amiri MM et al (2019) Integrational analysis of miRNAs data sets as a plausible missing linker between Epstein-Barr virus and vitamin D in relapsing remitting MS patients. Gene 689:1–10

    Article  CAS  Google Scholar 

  18. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    Article  CAS  Google Scholar 

  19. Yang D, Wang W-Z, Zhang X-M, Yue H, Li B, Lin L et al (2014) MicroRNA expression aberration in Chinese patients with relapsing remitting multiple sclerosis. J Mol Neurosci 52(1):131–137

    Article  CAS  Google Scholar 

  20. Abolghasemi M, Poursaei E, Bornehdeli S, Shanehbandi D, Asadi M, Sadeghzadeh M et al (2021) Exploration of potential circulating micro-RNA as biomarker for Alzheimer’s disease. Meta Gene 30:100968

    Article  CAS  Google Scholar 

  21. Baulina N, Kulakova O, Favorova O (2016) MicroRNAs: the role in autoimmune inflammation.Acta Naturae (англоязычная версия). ; 8(1 (28))

  22. Poursaei E, Abolghasemi M, Bornehdeli S, Shanehbandi D, Asadi M, Sadeghzadeh M et al (2022) Evaluation of hsa-let-7d-5p, hsa-let-7 g-5p and hsa-miR-15b-5p plasma levels in patients with Alzheimer’s disease. Psychiatr Genet 32(1):25–29

    Article  CAS  Google Scholar 

  23. Fenoglio C, Cantoni C, De Riz M, Ridolfi E, Cortini F, Serpente M et al (2011) Expression and genetic analysis of miRNAs involved in CD4 + cell activation in patients with multiple sclerosis. Neurosci Lett 504(1):9–12

    Article  CAS  Google Scholar 

  24. Jagot F, Davoust N (2016) Is it worth considering circulating microRNAs in multiple sclerosis? Front Immunol 7:129

    Article  Google Scholar 

  25. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M et al (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS ONE 4(10):e7440

    Article  Google Scholar 

  26. Ridolfi E, Fenoglio C, Cantoni C, Calvi A, De Riz M, Pietroboni A et al (2013) Expression and genetic analysis of microRNAs involved in multiple sclerosis. Int J Mol Sci 14(3):4375–4384

    Article  CAS  Google Scholar 

  27. Amoruso A, Blonda M, Gironi M, Grasso R, Di Francescantonio V, Scaroni F et al (2020) Immune and central nervous system-related miRNAs expression profiling in monocytes of multiple sclerosis patients. Sci Rep 10(1):1–8

    Article  Google Scholar 

  28. Ghadiri N, Emamnia N, Ganjalikhani-Hakemi M, Ghaedi K, Etemadifar M, Salehi M et al (2018) Analysis of the expression of mir-34a, mir-199a, mir-30c and mir-19a in peripheral blood CD4 + T lymphocytes of relapsing-remitting multiple sclerosis patients. Gene 659:109–117

    Article  CAS  Google Scholar 

  29. Keller A, Leidinger P, Bauer A, ElSharawy A, Haas J, Backes C et al (2011) Toward the blood-borne miRNome of human diseases. Nat Methods 8(10):841–843

    Article  CAS  Google Scholar 

  30. Søndergaard HB, Hesse D, Krakauer M, Sørensen PS, Sellebjerg F (2013) Differential microRNA expression in blood in multiple sclerosis. Multiple Scler J 19(14):1849–1857

    Article  Google Scholar 

  31. Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S et al (2022) Current and Future Biomarkers in Multiple Sclerosis.Int J Mol Sci. ; 23(11)

  32. Zailaie SA, Siddiqui JJ, Al Saadi RM, Anbari DM, Cupler ASA (2022) Serum Based miRNA as a Diagnostic Biomarker for Multiple Sclerosis: a Systematic Review and Meta-Analysis. Immunol Investig 51(4):947–962

    Article  CAS  Google Scholar 

  33. McDonald WI, Compston A, Edan G, Goodkin D, Hartung H-P, Lublin FD et al (2001) Recommended diagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127

    Article  CAS  Google Scholar 

  34. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis an expanded disability status scale (EDSS). Neurology 33(11):1444

    Article  CAS  Google Scholar 

  35. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  Google Scholar 

  36. Benson L, Healy B, Gorman M, Baruch N, Gholipour T, Musallam A et al (2014) Elevated relapse rates in pediatric compared to adult MS persist for at least 6 years. Multiple Scler Relat disorders 3(2):186–193

    Article  CAS  Google Scholar 

  37. Liguori M, Nuzziello N, Licciulli F, Consiglio A, Simone M, Viterbo RG et al (2018) Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: an integrated approach to uncover novel pathogenic mechanisms of the disease. Hum Mol Genet 27(1):66–79

    Article  CAS  Google Scholar 

  38. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10(12):1252–1259

    Article  CAS  Google Scholar 

  39. Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG (2018) MicroRNAs: roles in regulating neuroinflammation. The Neuroscientist 24(3):221–245

    Article  CAS  Google Scholar 

  40. Juźwik CA, Drake S, Zhang S, Paradis-Isler Y, Sylvester N, Amar-Zifkin A (2019) microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 182:101664

    Article  Google Scholar 

  41. Zailaie SA, Siddiqui JJ, Al Saadi RM, Anbari DM, Alomari S, Cupler A (2021) EJ. Serum Based miRNA as a Diagnostic Biomarker for Multiple Sclerosis: a Systematic Review and Meta-Analysis.Immunological investigations. :1–16

  42. Nateghi B, Emadi F, Eghbali M, Pezeshki P, Eshaghiyan A (2019) Circulating miR-193b-3p and miR-376a-3p Involved in Iranian Patients with Multiple Sclerosis. ibbjorg 5(1):24–28

    CAS  Google Scholar 

  43. Aljawadi ZA, Al-Derzi AR, Abdul-Majeed BA, Almahdawi AM (2016) MicroRNAs (20a, 146a, 155, and 145) expressions in a sample of Iraqi patients with multiple sclerosis. J Fac Med Baghdad 58(4):371–377

    Google Scholar 

  44. Roshani F, Delavar Kasmaee H, Falahati K, Arabzadeh G, Aohan Forooshan Moghadam A, Sanati MH (2021) Analysis of Micro-RNA-144 Expression Profile in Patients with Multiple Sclerosis in Comparison with Healthy Individuals. rbmb 10(3):396–401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful of patients, healthy individuals, and their family who contributed to accomplishment of this research.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

M.A.G. and S.S.: designed the study. M.A.G., S.A.A., M.A., D.S., and S.S.: patient data acquisition, statistical analysis, and interpretation of data. D.S., S.S.E., E.P., and S.A.N.: preparation and critically revision of the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Sheida Shaafi.

Ethics declarations

Ethics approval and consent to participate

Written informed consent was obtained from all of the participants at the beginning of the study. The study protocol was approved by the ethics committee of Tabriz University of Medical Sciences (Ethics number: IR.TBZMED.REC.1400.433). All methods were performed in accordance with the national guidelines and regulations and the ethical standards of the Declaration of Helsinki 1964.

Consent for publication

Not applicable.

Competing interests

The authors have declared that no competing financial interests or personal relationships exists in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolghasemi, M., Ali Ashrafi, S., Asadi, M. et al. MicroRNAs expression in peripheral blood mononuclear cells of patients with multiple sclerosis propose. Mol Biol Rep 50, 167–172 (2023). https://doi.org/10.1007/s11033-022-07905-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07905-0

Keywords

Navigation