Log in

Identification of endogenous microRNA references in porcine serum for quantitative real-time PCR normalization

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that regulate the expression of genes, and they affect important biological and physiological states. Circulating miRNAs in blood are useful markers of metabolism and economic traits. Expression levels of circulating miRNAs have been estimated using quantitative real-time PCR (qPCR). Proper normalization is critical for accurate miRNA expression analysis. However, there is no study which systematically presented endogenous reference genes for evaluating circulating miRNA expression in pigs. In this study, ten porcine miRNAs (let-7a, miR-16, miR-17, miR-23a, miR-26a, miR-93, miR-103, miR-107, miR-127 and miR-191), based on the literature, were chosen as candidate reference miRNAs in serum. We evaluated the expression stability value of these miRNAs in Berkshire, Duroc, Landrace and Yorkshire pigs using geNorm and NormFinder. We determined the optimal combination of reference miRNAs for qPCR experiments: miR-127 and miR-17 in Berkshire pigs; miR-127 and miR-93 in Duroc and Landrace pigs; miR-127 and miR-16 in Yorkshire pigs. miR-127 was the best reference gene in pigs, regardless of the breed. Our study is crucial for the discovery of novel biomarkers in pigs. The reference miRNAs presented in this study could be used as appropriate reference genes for the measurement of circulating miRNA levels in studies of physiological blood metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nyegaard S, Andreasen T, Rasmussen JT (2017) Lactadherin orthologs inhibit migration of human, porcine and murine intestinal epithelial cells. Food Sci Nutr 5(4):934–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flisikowska T, Stachowiak M, Xu H, Wagner A, Hernandez-Caceres A, Wurmser C et al (2017) Porcine familial adenomatous polyposis model enables systematic analysis of early events in adenoma progression. Sci Rep 7(1):6613

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fernandez-Perez J, Binner M, Werner C, Bray LJ (2017) Limbal stromal cells derived from porcine tissue demonstrate mesenchymal characteristics in vitro. Sci Rep 7(1):6377

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tran J, Craven C, Wabner K, Schmit J, Matter B, Kompella U et al (2017) A pharmacodynamic analysis of choroidal neovascularization in a porcine model using three targeted drugs. Invest Ophthalmol Vis Sci 58(9):3732–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Towler BP, Jones CI, Newbury SF (2015) Mechanisms of regulation of mature miRNAs. Biochem Soc Trans 43(6):1208–1214

    Article  CAS  PubMed  Google Scholar 

  6. Moreno-Moya JM, Viella F, Simon C (2014) MicroRNA: key gene expression regulators. Fertil Steril 101(6):1516–1523

    Article  CAS  PubMed  Google Scholar 

  7. Mayer G, Muller J, Lunse CE (2011) RNA diagnostics: real-time RT-PCR strategies and promising novel target RNAs. Wiley Interdiscip Rev RNA 2(1):32–41

    Article  CAS  PubMed  Google Scholar 

  8. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, osada H et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 11:3753–3756

    Article  Google Scholar 

  9. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 18:8433–8438

    Article  Google Scholar 

  10. Ching AS, Ahmad-Annuar A (2015) U6 snRNA is a suitable endogenous control for microRNA-124 and -134 in cultured rat hippocampal neurons. Sains Malays 44(10):1481–1488

    Article  CAS  Google Scholar 

  11. Tao X, Xu Z (2013) MicroRNA transcriptome in swine small intestine during weaning stress. PLoS ONE 8(11):e79343

    Article  PubMed  PubMed Central  Google Scholar 

  12. Timoneda O, Balcells I, Cordoba S, Castello A, Sanchez A (2012) Determination of reference microRNAs for relative quantification in porcine tissues. PLoS ONE 7(9):e44413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li J, Wei H, Li Y, Li Q, Li N (2012) Identification of a suitable endogenous control gene in porcine blastocysts for use in quantitative PCR analysis of microRNAs. Sci China Life Sci 55(2):126–131

    Article  CAS  PubMed  Google Scholar 

  14. Gu YR, Liang Y, Gong JJ, Zeng K, Li ZQ, Lei YF et al (2012) Suitable internal control microRNA genes for measuring miRNA abundance in pig milk during different lactation periods. Genet Mol Res 11(3):2506–2512

    Article  CAS  PubMed  Google Scholar 

  15. Jensen SG, Lamy P, Rasmussen MH, Ostenfeld MS, Dyrskjøt L et al (2011) Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics 12:435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalization; strategies and considerations. Genes Immun 6(4):279–284

    Article  CAS  PubMed  Google Scholar 

  17. Hansen EP, Kringel H, Thamsborg SM, Jex A, Nejsum P (2016) Profiling circulating miRNAs in serum from pigs infected with the porcine whipworm, Trichuris suis. Vet Parasitol 223:30–33

    Article  CAS  PubMed  Google Scholar 

  18. Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X et al (2012) Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS ONE 7(8):e43691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hansen EP, Kringel H, Williams AR, Nejsum P (2015) Secretion of RNA-containing extracellular vesicles by the porcine whipworm, Trichuris suis. J Parasitol 101(3):336–340

    Article  PubMed  Google Scholar 

  20. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  CAS  PubMed  Google Scholar 

  22. Rocha AJ, Monteiro-Junior JE, Freire JE, Sousa AJ, Fonteles CS (2015) Real-time PCR: the use of reference genes and essential rules required to obtain normalization data reliable to quantitative gene expression. J Mol Biol Res 5(1):45

    Article  Google Scholar 

  23. Bae IS, Chung KY, Yi J, Kim TI, Choi HS, Cho YM et al (2015) Identification of reference genes for relative quantification of circulating microRNAs in bovine serum. PLoS ONE 10(3):e0122554

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mahdipour M, van Tol HT, Stout TA, Roelen BA (2015) Validating reference microRNAs for normalizing qRT-PCR data in bovine oocytes and preimplantation embryos. BMC Dev Biol 15:25

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  26. **ang M, Zeng Y, Yang R, Xu H, Chen Z, Zhong J, **e H, Xu Y, Zeng X (2014) U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun 454(1):210–214

    Article  CAS  PubMed  Google Scholar 

  27. Benz F, Roderburg C, Vargas Cardenas D, Vucur M et al (2013) U6 is unsuitable for normalization of serum miRNA levels in patients with sepsis or liver fibrosis. Exp Mol Med 45:e42

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brase JC, Wuttig D, Kuner R, Sultmann H (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwarzenbach H, da Silva AM, Calin G, Pantel K (2015) Which is the accurate data normalization strategy for microRNA quantification? Clin Chem 16(11):1333–1342

    Article  Google Scholar 

  30. Chen X, Liang H, Guan D, Wang C, Hu X, Cui L et al (2013) A combination of Let-7d, Let-7 g and Let-7i serves as a stable reference for normalization of serum microRNAs. PLoS ONE 8(11):e79652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song J, Bai Z, Han W, Zhang J, Meng H, Bi J et al (2012) Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig Dis Sci 57(4):897–904

    Article  CAS  PubMed  Google Scholar 

  32. Niu Y, Wu Y, Huang J, Li Q, Kang K, Qu J et al (2016) Identification of reference genes for circulating microRNA analysis in colorectal cancer. Sci Rep 6:35611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mi QS, Weiland M, Qi RQ, Gao XH, Poisson LM, Zhou L (2012) Identification of mouse serum miRNA endogenous references by global gene expression profiles. PLoS ONE 7(2):e31278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ012704012018), Rural Development Administration (RDA), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang-Seok Seo or Sang Hoon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study complied with the ethical principles outlined in Animal Care and Use Committee in Sunchon University, Korea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, IS., Seo, KS. & Kim, S.H. Identification of endogenous microRNA references in porcine serum for quantitative real-time PCR normalization. Mol Biol Rep 45, 943–949 (2018). https://doi.org/10.1007/s11033-018-4242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4242-4

Keywords

Navigation