Log in

HIF-1α up-regulates NDRG1 expression through binding to NDRG1 promoter, leading to proliferation of lung cancer A549 cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hypoxia-inducible signaling pathway is involved in many pathological processes, such as adaptiveness regulation of plateau environment, myocardial ischemia and tumorigenesis. NDRG1 is a member of the N-myc downregulated gene (NDRG) family, and it has strong hypoxia stress reaction functions. Although the cellular responses to hypoxia are well known, little is known about the interaction between hypoxia-inducible transcription factor (HIF)-1α and NDRG1. In this study, we cloned HIF-1α CDS, NDRG1 promoter and its truncatures, constructed pCDNA3.0-Hif-1α and pGL3-basic-NDRG1. Reporter assay results showed that HIF-1α could bind to NDRG1 promoter to activate NDRG1 expression. Further results revealed that −1202 to −450 of NDRG1 promoter is the most important region for HIF-1α binding. Then, we constructed NDRG1 stable transfection cell line. Results from MTT, colony-forming assay and flow cytometry showed that NDRG1 overexpression results in more proliferation and less apoptosis of A549 lung cancer cells. Our study elucidates the mechanism of NGRG1 in hypoxia stress reactions and may provide new strategy for hypoxia injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown JM (2000) Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 6(4):157–162

    Article  PubMed  CAS  Google Scholar 

  2. Brahimi-Horn MC, Pouyssegur J (2007) Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol 73(3):450–457. doi:10.1016/j.bcp.2006.10.013

    Article  PubMed  CAS  Google Scholar 

  3. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182. doi:10.1152/physiol.00001.2004

    Article  CAS  Google Scholar 

  4. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007 (407):cm8. doi:10.1126/stke.4072007cm8

  5. Piquemal D, Joulia D, Balaguer P, Basset A, Marti J, Commes T (1999) Differential expression of the RTP/Drg1/Ndr1 gene product in proliferating and growth arrested cells. Biochim Biophys Acta 1450(3):364–373

    Article  PubMed  CAS  Google Scholar 

  6. Salnikow K, Blagosklonny MV, Ryan H, Johnson R, Costa M (2000) Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res 60(1):38–41

    PubMed  CAS  Google Scholar 

  7. Zhou D, Salnikow K, Costa M (1998) Cap43, a novel gene specifically induced by Ni2 + compounds. Cancer Res 58(10):2182–2189

    PubMed  CAS  Google Scholar 

  8. Kokame K, Kato H, Miyata T (1996) Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. GRP78/BiP and novel genes. J Biol Chem 271(47):29659–29665

    Article  PubMed  CAS  Google Scholar 

  9. Kurdistani SK, Arizti P, Reimer CL, Sugrue MM, Aaronson SA, Lee SW (1998) Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Res 58(19):4439–4444

    PubMed  CAS  Google Scholar 

  10. Guan RJ, Ford HL, Fu Y, Li Y, Shaw LM, Pardee AB (2000) Drg-1 as a differentiation-related, putative metastatic suppressor gene in human colon cancer. Cancer Res 60(3):749–755

    PubMed  CAS  Google Scholar 

  11. Taketomi Y, Sugiki T, Saito T, Ishii S, Hisada M, Suzuki-Nishimura T, Uchida MK, Moon TC, Chang HW, Natori Y, Miyazawa S, Kikuchi-Yanoshita R, Murakami M, Kudo I (2003) Identification of NDRG1 as an early inducible gene during in vitro maturation of cultured mast cells. Biochem Biophys Res Commun 306(2):339–346

    Article  PubMed  CAS  Google Scholar 

  12. Bandyopadhyay S, Pai SK, Gross SC, Hirota S, Hosobe S, Miura K, Saito K, Commes T, Hayashi S, Watabe M, Watabe K (2003) The Drg-1 gene suppresses tumor metastasis in prostate cancer. Cancer Res 63(8):1731–1736

    PubMed  CAS  Google Scholar 

  13. Bandyopadhyay S, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Commes T, Piquemal D, Watabe M, Gross S, Wang Y, Huggenvik J, Watabe K (2004) PTEN up-regulates the tumor metastasis suppressor gene Drg-1 in prostate and breast cancer. Cancer Res 64(21):7655–7660. doi:10.1158/0008-5472.CAN-04-1623

    Article  PubMed  CAS  Google Scholar 

  14. van Belzen N, Dinjens WN, Diesveld MP, Groen NA, van der Made AC, Nozawa Y, Vlietstra R, Trapman J, Bosman FT (1997) A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms. Lab Invest 77(1):85–92

    PubMed  Google Scholar 

  15. Salnikow K, An WG, Melillo G, Blagosklonny MV, Costa M (1999) Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors. Carcinogenesis 20(9):1819–1823

    Article  PubMed  CAS  Google Scholar 

  16. Salnikow K, Su W, Blagosklonny MV, Costa M (2000) Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism. Cancer Res 60(13):3375–3378

    PubMed  CAS  Google Scholar 

  17. Zhang J, Li F, Liu X, Shen L, Liu J, Su J, Zhang W, Deng Y, Wang L, Liu N, Han W, Ji S, Yang A, Han H, Yao L (2006) The repression of human differentiation-related gene NDRG2 expression by Myc via Miz-1-dependent interaction with the NDRG2 core promoter. J Biol Chem 281(51):39159–39168. doi:10.1074/jbc.M605820200

    Article  PubMed  CAS  Google Scholar 

  18. Salnikow K, Kluz T, Costa M, Piquemal D, Demidenko ZN, **e K, Blagosklonny MV (2002) The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol Cell Biol 22(6):1734–1741

    Article  PubMed  CAS  Google Scholar 

  19. Shimono A, Okuda T, Kondoh H (1999) N-myc-dependent repression of ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant. Mech Dev 83(1–2):39–52

    Article  PubMed  CAS  Google Scholar 

  20. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1):179–185. doi:10.1038/nprot.2006.27

    Article  PubMed  CAS  Google Scholar 

  21. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515

    PubMed  CAS  Google Scholar 

  22. Sanna K, Rofstad EK (1994) Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer 58(2):258–262

    Article  PubMed  CAS  Google Scholar 

  23. Cangul H (2004) Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genet 5:27. doi:10.1186/1471-2156-5-271471-2156-5-27

    Article  PubMed  Google Scholar 

  24. Ellen TP, Ke Q, Zhang P, Costa M (2008) NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states. Carcinogenesis 29(1):2–8. doi:10.1093/carcin/bgm200

    Article  PubMed  CAS  Google Scholar 

  25. Lachat P, Shaw P, Gebhard S, van Belzen N, Chaubert P, Bosman FT (2002) Expression of NDRG1, a differentiation-related gene, in human tissues. Histochem Cell Biol 118(5):399–408. doi:10.1007/s00418-002-0460-9

    Article  PubMed  CAS  Google Scholar 

  26. Lok CN, Ponka P (1999) Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 274(34):24147–24152

    Article  PubMed  CAS  Google Scholar 

  27. Semenza GL (1998) Hypoxia-inducible factor 1 and the molecular physiology of oxygen homeostasis. J Lab Clin Med 131(3):207–214

    Article  PubMed  CAS  Google Scholar 

  28. Cangul H, Salnikow K, Yee H, Zagzag D, Commes T, Costa M (2002) Enhanced overexpression of an HIF-1/hypoxia-related protein in cancer cells. Environ Health Perspect 110(Suppl 5):783–788

    Article  PubMed  CAS  Google Scholar 

  29. Madan A, Curtin PT (1993) A 24-base-pair sequence 3′ to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc Natl Acad Sci U S A 90(9):3928–3932

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (3097243).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **-Ge Li or Chun-Mei Wang.

Additional information

Qiang Wang and Li-Hong Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Li, LH., Gao, GD. et al. HIF-1α up-regulates NDRG1 expression through binding to NDRG1 promoter, leading to proliferation of lung cancer A549 cells. Mol Biol Rep 40, 3723–3729 (2013). https://doi.org/10.1007/s11033-012-2448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2448-4

Keywords

Navigation