Log in

Genetic variations of ANGPTL6 gene and their associations with growth traits and slaughter traits in Qinchuan cattle

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Angiopoietin-like protein 6 (ANGPTL6), which plays an important role in angiogenesis and energy metabolism as a circulating orphan peptide secreted by liver, could produce a potential effect on growth and development of animals. The objective of this study was to detect genetic variations of ANGPTL6 gene in 732 Qinchuan cattle, as well as to analyze their associations with growth traits and carcass weight. Herein, three novel mutations (T2359C, C2403A and G3258T) were identified in cattle for the first time. Chi-square test showed T2359C and C2403A loci were in Hardy–Weinberg equilibrium except G3258T locus. Haplotype with TCG (wild type) was dominant with frequency of 40.0 % among eight different haplotypes. Statistical analysis showed body height (BH) and hucklebone width (HW) of individuals with genotype CC were significant higher than other genotypes in T2359C locus (P < 0.05). In the C2403A locus, chest girth (CG), chest depth (CD), and chest breadth (CB) of individuals with genotype CA were all extremely significant higher (P < 0.01) while BH was significant higher (P < 0.05) than genotype CC. The association analysis of combined sites showed BH, CG, CB and HW of individuals with combined genotype TC–CA were significant higher than other combined genotypes (P < 0.05) in ScaI–VspI site. BH, CG and CB of individuals with genotype CA–GG were significant higher (P < 0.05) as well as CD was extremely significant higher (P < 0.01) than other genotypes in VspI–RsaI site. For ScaI–VspI–RsaI site, CD and HW of individuals with genotype TC–CA–GG were significant higher (P < 0.05) than those of other combined genotypes. Slaughter test also revealed that the effect of the combined genotypes was extremely significant on the carcass weight. Carcass weight of individuals with genotype TT–CA and TT–CA–GT were extremely significant heavier than other combined genotypes (P < 0.01) in the ScaI–VspI and ScaI–VspI–RsaI sites. And those with genotype TT–GT of ScaI–RsaI were significantly heavy (P < 0.05) as well as the individuals with genotype CA–GT of VspI–RsaI. In conclusion, the present results provided evidence that polymorphisms of ANGPTL6 gene were associated with growth and slaughter traits, and may apply to Qinchuan cattle breeding program as a possible candidate for marker-assisted selection (MAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oike Y, Yasunaga K, Ito Y, Matsumoto S, Maekawa H, Morisada T, Arai F, Nakagata N, Takeya M, Masuho Y, Suda T (2003) Angiopoietin-related growth factor (AGF) promotes epidermal proliferation, remodeling, and regeneration. Proc Natl Acad Sci USA 100:9494–9499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hato T (2008) The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc Med 18:6–14

    Article  CAS  PubMed  Google Scholar 

  3. Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13:1055–1066

    Article  CAS  PubMed  Google Scholar 

  4. Oike Y, Yasunaga K, Suda T (2004) Angiopoietin-Related/Angiopoietin-Like proteins regulate angiogenesis. Int J Hematol 80:21–28

    Article  CAS  PubMed  Google Scholar 

  5. Oike Y, Ito Y, Maekawa H, Morisada T, Kubota Y, Akao M, Urano T, Yasunaga K, Suda T (2004) Angiopoietin-related growth factor (AGF) promotes angiogenesis. Blood 103:3760–3765

    Article  CAS  PubMed  Google Scholar 

  6. Kadomatsu T, Tabata M, Oike Y (2011) Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS J 278:559–564

    Article  CAS  PubMed  Google Scholar 

  7. Kim I, Kim HG, Kim H, Kim HH, Park SK, Uhm CS, Lee ZH, Koh GY (2000) Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 346:603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim I, Moon SO, Koh KN, Kim H, Uhm CS, Kwak HJ, Kim NG, Koh GY (1999) Molecular cloning, expression, and characterization of angiopoietin-related protein. angiopoietin-related protein induces endothelial cell sprouting. J Biol Chem 274:26523–26528

    Article  CAS  PubMed  Google Scholar 

  9. Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin YB, Soukas A, Friedman JM, Holmes WE, Spiegelman BM (2000) Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20:5343–5349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B, Wahli W (2000) Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275:28488–28493

    Article  CAS  PubMed  Google Scholar 

  11. Koishi R, Ando Y, Ono M, Shimamura M, Yasumo H, Fujiwara T, Horikoshi H, Furukawa H (2002) Angptl3 regulates lipid metabolism in mice. Nat Genet 30:151–157

    Article  CAS  PubMed  Google Scholar 

  12. Camenisch G, Pisabarro MT, Sherman D, Kowalski J, Nagel M, Hass P, **e MH, Gurney A, Bodary S, Liang XH, Clark K, Beresini M, Ferrara N, Gerber HP (2002) ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha(v)beta(3) and induces blood vessel formation in vivo. J Biol Chem 277:17281–17290

    Article  CAS  PubMed  Google Scholar 

  13. Dhanabal M, LaRochelle WJ, Jeffers M, Herrmann J, Rastelli L, McDonald WF, Chillakuru RA, Yang MJ, Boldog FL, Padigaru M, McQueeney KD, Wu F, Minskoff SA, Shimkets RA, Lichenstein HS (2002) Angioarrestin: An antiangiogenic protein with tumor-inhibiting properties. Cancer Res 62:3834–3841

    CAS  PubMed  Google Scholar 

  14. Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, Philippe J, Sibony M, Gasc JM, Corvol P, Germain S (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162:1521–1528

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ito Y, Oike Y, Yasunaga K, Hamada K, Miyata K, Matsumoto S, Sugano S, Tanihara H, Masuho Y, Suda T (2003) Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Cancer Res 63:6651–6657

    CAS  PubMed  Google Scholar 

  16. Zandbergen AAM, Lamberts SWJ, Janssen JAMJL, Bootsma AH (2006) Short-term administration of an angiotensin-receptor antagonist in patients with impaired fasting glucose improves insulin sensitivity and increases free IGF-I. Eur J Endocrinol 155:293–296

    Article  CAS  PubMed  Google Scholar 

  17. Oike Y, Akao M, Yasunaga K, Yamauchi T, Morisada T, Ito Y, Urano T, Kimura Y, Kubota Y, Maekawa H, Miyamoto T, Miyata K, Matsumoto S, Sakai J, Nakagata N, Takeya M, Koseki H, Ogawa Y, Kadowaki T, Suda T (2005) Angiopoietin-related growth factor antagonizes obesity and insulin resistance. Nat Med 11:400–408

    Article  CAS  PubMed  Google Scholar 

  18. Oike Y, Tabata M (2009) Angiopoietin-like proteins–potential therapeutic targets for metabolic syndrome and cardiovascular disease. Circ J 73:2192–2197

    Article  CAS  PubMed  Google Scholar 

  19. Urano T, Ito Y, Akao M, Sawa T, Miyata K, Tabata M, Morisada T, Hato T, Yano M, Kadomatsu T, Yasunaga K, Shibata R, Murohara T, Akaike T, Tanihara H, Suda T, Oike Y (2008) Angiopoietin-related growth factor enhances blood flow via activation of the ERK1/2-eNOS-NO pathway in a mouse hind-limb ischemia model. Arterioscler Thromb Vasc Biol 28:827–834

    Article  CAS  PubMed  Google Scholar 

  20. Legry V, Goumidi L, Huyvaert M, Cottel D, Ferrières J, Arveiler D, Bingham A, Wagner A, Ruidavets JB, Ducimetière P (2009) Association between angiopoietin-like 6 (ANGPTL6) gene polymorphisms and metabolic syndrome-related phenotypes in the French MONICA Study. Diabetes Metab 35:287–292

    Article  CAS  PubMed  Google Scholar 

  21. Kitazawa M, Ohizumi Y, Oike Y, Hishinuma T, Hashimoto S (2007) Angiopoietin-Related Growth Factor Suppresses Gluconeogenesis through the Akt/Forkhead Box Class O1-Dependent Pathway in Hepatocytes. J Pharmacol Exp Ther 323:787–793

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook J, Russell DW (2002) Translated by huang pei tang. Molecular cloning a laboratory manual, 3rd edn. Science Press, Bei**g

    Google Scholar 

  23. Norton N, Williams NM, O’Donovan MC, Owen MJ (2004) DNA pooling as a tool for large-scale association studies in complex traits. Ann Med 36:146–152

    Article  CAS  PubMed  Google Scholar 

  24. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76:379–390

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15:97–98

    Article  CAS  PubMed  Google Scholar 

  28. Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, He L, Shi Y (2009) A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis http://www.analysis.bio-x.cn. Cell Res 19:519–523

    Google Scholar 

  29. Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, Gill CA, Green RD, Hamernik DL, Kappes SM, Lien S et al (2009) Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324:528–532

    Article  CAS  PubMed  Google Scholar 

  30. Huang YZ, He H, Wang J, Li ZJ, Lan XY, Lei CZ, Zhang EP, Zhang CL, Wang JQ, Shen QW, Chen H (2011) Sequence variants in the bovine nucleophosmin 1 gene, their linkage and their associations with body weight in native cattle breeds in China. Anim Genet 42:556–559

    Article  CAS  PubMed  Google Scholar 

  31. Orozco G, Hinks A, Eyre S, Ke X, Gibbons LJ, Bowes J, Flynn E, Martin P, Wilson AG, Bax DE, Morgan AW, Emery P, Steer S, Hocking L, Reid DM, Wordsworth P, Harrison P, Thomson W, Barton A, Worthington J (2009) Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Hum Mol Genet 18:2693–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stepan H, Ebert T, Schrey S, Reisenbuchler C, Stein S, Lossner U, Bluher M, Stumvoll M, Kratzsch J, Faber R, Fasshauer M (2009) Serum levels of angiopoietin-related growth factor are increased in preeclampsia. Am J Hypertens 22:314–318

    Article  CAS  PubMed  Google Scholar 

  33. Paulson QX, Hong J, Holcomb VB, Nunez NP (2010) Effects of body weight and alcohol consumption on insulin sensitivity. Nutr J 9:14

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mirzaei K, Hossein-Nezhad A, Chamari M, Shahbazi S (2011) Evidence of a role of ANGPTL6 in resting metabolic rate and its potential application in treatment of obesity. Minerva Endocrinol 36:13–21

    CAS  PubMed  Google Scholar 

  35. Geary TW, McFadin EL, MacNeil MD, Grings EE, Short RE, Funston RN, Keisler DH (2003) Leptin as a predictor of carcass composition in beef cattle. J Anim Sci 81:1–8

    CAS  PubMed  Google Scholar 

  36. Kononoff PJ, Deobald HM, Stewart EL, Laycock AD, Marquess FL (2005) The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle. J Anim Sci 83:927–932

    CAS  PubMed  Google Scholar 

  37. te Pas MF, Soumillion A, Harders FL, Verburg FJ, van den Bosch TJ, Galesloot P, Meuwissen TH (1999) Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs. J Anim Sci 77:2352–2356

    Google Scholar 

  38. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Hori M, Nakamura Y, Tanaka T (2002) Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 32:650–654

    Article  CAS  PubMed  Google Scholar 

  39. Surinya KH, Cox TC, May BK (1998) Identification and characterization of a conserved erythroid-specific enhancer located in intron 8 of the human 5-aminolevulinate synthase 2 gene. J Biol Chem 273:16798–16809

    Article  CAS  PubMed  Google Scholar 

  40. Ghayor C, Herrouin JF, Chadjichristos C, Ala-Kokko L, Takigawa M, Pujol JP, Galera P (2000) Regulation of human COL2A1 gene expression in chondrocytes. Identification of C-Krox-responsive elements and modulation by phenotype alteration. J Biol Chem 275:27421–27438

    CAS  PubMed  Google Scholar 

  41. Beohar N, Kawamoto S (1998) Transcriptional regulation of the human nonmuscle myosin II heavy chain-A gene. Identification of three clustered cis-elements in intron-1 which modulate transcription in a cell type- and differentiation state-dependent manner. J Biol Chem 273:9168–9178

    Article  CAS  PubMed  Google Scholar 

  42. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H, Nagashima M, Yoshino S, Mabuchi A, Sekine A, Saito S, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35:341–348

    Article  CAS  PubMed  Google Scholar 

  43. Cheong HS, Yoon DH, Kim LH, Park BL, Choi YH, Chung ER, Cho YM, Park EW, Cheong IC, Oh SJ, Yi SG, Park T, Shin HD (2006) Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle. BMC Genet 7:35

    Article  PubMed  PubMed Central  Google Scholar 

  44. Berkowicz EW, Magee DA, Sikora KM, Berry DP, Howard DJ, Mullen MP, Evans RD, Spillane C, MacHugh DE (2011) Single nucleotide polymorphisms at the imprinted bovine insulin-like growth factor 2 (IGF2) locus are associated with dairy performance in Irish Holstein-Friesian cattle. J Dairy Res 78:1–8

    Article  CAS  PubMed  Google Scholar 

  45. Berkowicz EW, Magee DA, Berry DP, Sikora KM, Howard DJ, Mullen MP, Evans RD, Spillane C, MacHugh DE (2012) Single nucleotide polymorphisms in the imprinted bovine insulin-like growth factor 2 receptor gene (IGF2R) are associated with body size traits in Irish Holstein-Friesian cattle. Anim Genet 43:81–87

    Article  CAS  PubMed  Google Scholar 

  46. Weikard R, Kuhn C, Goldammer T, Freyer G, Schwerin M (2005) The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genomics 21:1–13

    Article  CAS  PubMed  Google Scholar 

  47. Juszczuk-Kubiak E, Sakowski T, Flisikowski K, Wicinska K, Oprzadek J, Rosochacki SJ (2004) Bovine mu-calpain (CAPN1) gene: new SNP within intron 14. J Appl Genet 45:457–460

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30972080 and 31172193), Agricultural Science and Technology Innovation Projects of Shaanxi Province (No.2012NKC01-13), and Program of National Beef Cattle Industrial Technology System (No.CARS-38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, AM., Lan, XY., Sun, XM. et al. Genetic variations of ANGPTL6 gene and their associations with growth traits and slaughter traits in Qinchuan cattle. Mol Biol Rep 39, 9223–9232 (2012). https://doi.org/10.1007/s11033-012-1795-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1795-5

Keywords

Navigation