Log in

AtMYB12 gene: a novel visible marker for wheat transformation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Efficiency of plant transformation is less than optimal for many important species, especially for monocots which are traditionally recalcitrant to transformation, such as wheat. And due to limited number of selectable marker genes, identification or selection of those cells that have integrated DNA into appropriate plant genome and to regenerate fully developed plants from the transformed cells, becomes even more difficult. Some of the widely used marker genes belong to the categories of herbicide or antibiotic resistance genes and flourescent protein genes. As they become an integral part of plant genome along with promoters prokaryotic or eukaryotic origin, there are certain health and environmental concerns about the use of these reporter genes. These marker genes are also inefficient with respect to time and space. In this study we have found a novel visible selection agent AtMYB12, to screen transgenic wheat, with in days after transformation. Transformed coleoptiles as well as cells regenerating from transformed cultured scutella, phenotypically exhibit purple pigmentation, making selection possible in limited and reasonable cost, time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmed N, Maekawa M, Utsugi S, Himi E, Ablet H, Rikiishi K, Noda K (2003) Transient expression of anthocyanin in develo** wheat coleoptile by maize C1 and B-peru regulatory genes for anthocyanin synthesis. Breed Sci 53:29–34

    Article  CAS  Google Scholar 

  2. Arago FJL, Brasileiro ACM (2002) Positive, negative and marker-free strategies for transgenic plant selection. Braz J Plant Physiol 14:1–10

    Google Scholar 

  3. Borevitz JO, **a Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    Article  CAS  PubMed  Google Scholar 

  4. Bovy A et al (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–2526

    Article  CAS  PubMed  Google Scholar 

  5. Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90:11212–11216

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Tu Z, Hussain J, Cong L, Yan Y, ** L, Yang G, He G (2010) Isolation and heterologous transformation analysis of a pollen-specific promoter from wheat (Triticum aestivum L.). Mol Biol Rep 37:737–744

    Article  PubMed  Google Scholar 

  7. Chen P, Wang C, Li K, Chang J, Wang Y, Yang G, Shewry PR, He G (2008) Cloning, expression and characterization of novel avenin-like genes in wheat and related species. J Cereal Sci 48:734–740

    Article  CAS  Google Scholar 

  8. Daniell H, Datta R, Varma S, Gray S, Lee S-B (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  CAS  PubMed  Google Scholar 

  9. Ding L, Li S, Gao J, Wang Y, Yang G, He G (2009) Optimization of agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep 36:29–36

    Article  CAS  PubMed  Google Scholar 

  10. Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5:299–302

    Article  Google Scholar 

  11. Gadaleta A, Giancaspro A, Blechl A, Blanco A (2006) Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. J Cereal Sci 43:31–37

    Article  CAS  Google Scholar 

  12. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    Article  CAS  PubMed  Google Scholar 

  13. Haliloglu K (2006) Efficient regeneration system from wheat leaf base segments. Biol Plant 50:326–330

    Article  CAS  Google Scholar 

  14. Haseloff J, Siemering KR (2005) The uses of green fluorescent protein in plants. Green fluorescent protein: properties, applications and protocols. Methods Biochem Anal 47:259

    Google Scholar 

  15. James C (2004) Global status of commercialized biotech/GM crops: 2004. ISAAA Briefs 32:1–12

    Google Scholar 

  16. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901

    CAS  PubMed  Google Scholar 

  17. Jie Luo, Butelli E, Hill L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C (2008) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 56:316–326

    Article  PubMed  Google Scholar 

  18. Kunze I, Ebneth M, Heim U, Geiger M, Sonnewald U, Herbers K (2001) 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Mol Breed 7:221–227

    Article  CAS  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  20. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91

    Article  CAS  PubMed  Google Scholar 

  21. Ludwig SR, Bowen B, Beach L, Wessler SR (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247:449–450

    Article  CAS  PubMed  Google Scholar 

  22. McCormac A, Wu H, Bao M, Wang Y, Xu R, Elliott M, Chen D (1998) The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica 99:17–25

    Article  CAS  Google Scholar 

  23. Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  CAS  PubMed  Google Scholar 

  24. Philippe V (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    Article  Google Scholar 

  25. Roland Bilang SZ, Leduc N, Iglesias VA, Gisel A, Simmonds J, Potrykus I, Sautter C (1993) Transient gene expression in vegetative shoot apical meristems of wheat after ballistic microtargeting. Plant J 4:735–744

    Article  Google Scholar 

  26. Shewry PR, Tatham AS, Fido RJ (1995) Separation of plant proteins by electrophoresis. Methods in molecular biology—plant gene transfer and expression protocols, vol 49. pp 399–422

  27. Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  28. Stacey J, Isaac P (1994) Isolation of DNA from plants. Methods in molecular biology—protocols for nucleic acid analysis by nonradioactive probes, vol 28. pp 9–15

  29. Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  CAS  PubMed  Google Scholar 

  30. Sundar IK, Sakthivel N (2008) Advances in selectable marker genes for plant transformation. J Plant Physiol 165:1698–1716

    Article  CAS  PubMed  Google Scholar 

  31. Thirukkumaran G, Khan R, Chin D, Nakamura I, Mii M (2009) Isopentenyl transferase gene expression offers the positive selection of marker-free transgenic plant of Kalanchoe blossfeldiana. Plant Cell Tissue Organ Cult 97:237–242

    Article  CAS  Google Scholar 

  32. Toshio Murashige FS (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  Google Scholar 

  33. Vain P, De Buyser J, Bui Trang V, Haicour R, Henry Y (1995) Foreign gene delivery into monocotyledonous species. Biotechnol Adv 13:653–671

    Article  CAS  PubMed  Google Scholar 

  34. Vasil I (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440

    Article  CAS  PubMed  Google Scholar 

  35. Yao Q, Cong L, Chang JL, Li KX, Yang GX, He GY (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J Exp Bot 57:3737

    Article  CAS  PubMed  Google Scholar 

  36. Yao Q, Cong L, He G, Chang J, Li K, Yang G (2007) Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol Biol Rep 34:61–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was support by the national Natural Science Foundation of China (30871524), the National S&T Major Project of the People's Republic of China (2008ZX08002004), (2008ZX08010-004), and National Science Foundation of China (2009DFB30340), (2009DFB20290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyuan He.

Additional information

Xuan Gao and Li Zhang have contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Zhang, L., Zhou, S. et al. AtMYB12 gene: a novel visible marker for wheat transformation. Mol Biol Rep 38, 183–190 (2011). https://doi.org/10.1007/s11033-010-0093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0093-3

Keywords

Navigation