Log in

Genomic map** and identification of candidate genes encoding nulliplex-branch trait in sea-island cotton (Gossypium barbadense L.) by multi-omics analysis

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Nulliplex branch is a key architectural trait in sea-island cotton (Gossypium barbadense L.), but its genetic basis is not well understood. Here we investigated the genetic basis of the nulliplex-branch trait in cotton by combining newly created bulked segregant analysis (BSA)-seq data, published RNA-seq data, and published whole-genome resequencing (WGR) data. We delimited the nulliplex-branch locus (qD07-NB) to D07, region 14.8–17.1 Mb, using various BSA methods and markers. We integrated our BSA data with WGR data of sea-island cotton varieties and detected a missense single-nucleotide polymorphism in the candidate gene (Gbar_D07G011870) of qD07-NB. This gene was under positive selection during sea-island cotton breeding in the **njiang Uygur Autonomous Region, China. Notably, the nulliplex-branch varieties possessed a better fiber quality than the long-branch varieties, and a set of high-quality molecular markers was identified for molecular breeding of the nulliplex-branch trait in cotton. We combined BSA-seq and RNA-seq data to compare gene expression profiles between two elite sea-island cotton varieties during three developmental stages. We identified eleven relevant candidate genes, five downregulated and six upregulated, in the qD07-NB locus. This research will expand our understanding of the genetic basis of the nulliplex-branch trait and provide guidance for architecture-focused breeding in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data can be found within the manuscript and its supporting materials.

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30(2):174–178

    Article  CAS  PubMed  Google Scholar 

  • Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel TH, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo AL, Tieman DM, Klee H, Kirsche M, Aganezov S, Ranallo-Benavidez TR, Lemmon ZH, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie WR, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck FJ, van der Knaap E, Schatz MC, Lippman ZB (2020) Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182(1):145–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81(5):1084–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Yao J, Chu L, Yuan Z, Li Y, Zhang Y (2015) Genetic map** of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. Theor Appl Genet 128(3):539–547

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Jia H, Zhang X, Qiao L, Li X, Zheng J, Guo H, Powers C, Yan L, Chang Z (2019a) Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat. Crop J 7(6):771–783

    Article  Google Scholar 

  • Chen W, Yao J, Li Y, Zhao L, Liu J, Guo Y, Wang J, Yuan L, Liu Z, Lu Y, Zhang Y (2019b) Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton. Theor Appl Genet 132:97–112

    Article  CAS  PubMed  Google Scholar 

  • Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constable GA, Bange MP (2015) The yield potential of cotton (Gossypium hirsutum L.). Field Crops Res 182:98–106

    Article  Google Scholar 

  • Dai J, Dong H (2014) Intensive cotton farming technologies in China: achievements, challenges and countermeasures. Field Crops Res 155:99–110

    Article  Google Scholar 

  • Dai J, Kong X, Zhang D, Li W, Dong H (2017) Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Res 214:142–148

    Article  Google Scholar 

  • Dai X, He C, Zhou L, Liang M, Fu X, Qin P, Yang Y, Chen L (2018) Identification of a specific molecular marker for the rice blast-resistant gene Pigm and molecular breeding of thermo-sensitive genic male sterile leaf-color marker lines. Mol Breeding 38(6):72

    Article  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 100 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di J, Chen X, Zhao L (2014) Genetic research and breeding evaluation on short branch trait of Gossypium hirsutum L. China Cotton 41(11):5–7

    Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance. Nature 386(3):485–488

    Article  CAS  PubMed  Google Scholar 

  • Du X (1996) Unification of fruit branch type division of cotton. China Cotton 23(4):19

    Google Scholar 

  • Geng H, Zhang Y, He Z, Zhang L, Appels R, Qu Y, **a X (2011) Molecular markers for tracking variation in lipoxygenase activity in wheat breeding. Mol Breeding 28(1):117–126

    Article  CAS  Google Scholar 

  • Guo W, Chen L, Herrera-Estrella L, Cao D, Tran LP (2020) Altering plant architecture to improve performance and resistance. Trends Plant Sci 25(11):1154–1170

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Lv S, Wu W, Fu Y, Zhu Z (2018) The domestication of plant architecture in African rice. Plant J 94:661–669

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51(4):739–748

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Tang W, Bu S, Wu W (2020) BRM: a statistical method for QTL map** based on bulked segregant analysis by deep sequencing. Bioinformatics 36(7):2150–2156

    Article  CAS  PubMed  Google Scholar 

  • Kaggwa-Asiimwea R, Andrade-Sanchez P, Wang G (2013) Plant architecture influences growth and yield response of upland cotton to population density. Field Crops Res 145:52–59

    Article  Google Scholar 

  • Kulwal PL (2018) Trait map** approaches through linkage map** in plants. In: Varshney RK, Pandey MK, Chitikineni A (eds) Plant genetics and molecular biology. Springer International Publishing, Cham, pp 53–82

    Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King GJ, Liu K (2019) An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol 222:837–851

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Shi Z, Zhang X, Wang M, Zhang L, Zheng K, Liu J, Hu X, Di C, Qian Q, He Z, Yang DL (2019) Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat Plants 5(4):389–400

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraes TS, Dornelas MC, Martinelli AP (2019) FT/TFL1: calibrating plant architecture. Front Plant Sci 10:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie X, Wen T, Shao P, Tang B, Nuriman-Guli A, Yu Y, Du X, You C, Lin Z (2020) High-density genetic variation maps reveal the correlation between asymmetric interspecific introgressions and improvement of agronomic traits in Upland and Pima cotton varieties developed in **njiang, China. Plant J 103(2):677–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464(7289):768–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3(9):846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Zhang L, Du M, Evers JB, van der Werf W, Tian XL, Li ZH (2013) Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crop Res 149(2):1–10

    Article  Google Scholar 

  • Schlötterer C, Tobler R, Kofler R, Nolte V (2014) Sequencing pools of individuals - mining genome-wide polymorphism data without big funding. Nat Rev Genet 15(11):749–763

    Article  PubMed  Google Scholar 

  • Si Z, Liu H, Zhu J, Chen J, Wang Q, Fang L, Gao F, Tian Y, Chen Y, Chang L, Liu B, Han Z, Zhou B, Hu Y, Huang X, Zhang T (2018) Mutation of SELF-PRUNING homologs in cotton promotes short-branching plant architecture. J Exp Bot 69(10):2543–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Zhang T (2009) Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci 177(4):317–323

    Article  CAS  Google Scholar 

  • Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ, Goren A, Jiang K, Ramos A, van der Knaap E, Van Eck J, Zamir D, Eshed Y, Lippman ZB (2017) Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell 169(6):1142–1155

    Article  CAS  PubMed  Google Scholar 

  • Su JJ, Li LB, Zhang C, Wang CX, Gu LJ, Wang HT, Wei HL, Liu QB, Huang L, Yu SX (2018) Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet 131:1299–1314

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Du X, ChaoweiCai LL, Zhang S, Qiao P, Wang W, Zhou K, Wang G, Liu X, Zhang H, Geng S, Yang C, Gao W, Mo J, Miao C, Song C, Cai Y (2016) To be a flower or fruiting branch insights revealed by mRNA and small RNA transcriptomes from different cotton developmental stages. Sci Rep 6:23212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Su C, Yun J, Jiang Q, Wang L, Wang Y, Cao D, Zhao F, Zhao Q, Zhang M, Zhou B, Zhang L, Kong F, Liu B, Tong Y, Li X (2019) Genetic improvement of the shoot architecture and yield in soybean plants via the manipulation of GmmiR156b. Plant Biotechnol J 17:50–62

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid map** of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74(1):174–183

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wang C, **a J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, ** W, Tian F (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658–664

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Wang P, Tu L, Zhu S, Zhang L, Li Z, Zhang Q, Yuan D, Zhang X (2016) Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation. Nucleic Acids Res 44(9):4067–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Smith SM, Li J (2018a) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H, ** S, Zhang X (2018b) High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16:137–150

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Tang S, Zhan Q, Hou Q, Zhao Y, Zhao Q, Feng Q, Zhou C, Lyu D, Cui L, Li Y, Miao J, Zhu C, Lu Y, Wang Y, Wang Z, Zhu J, Shangguan Y, Gong J, Yang S, Wang W, Zhang J, ** informs a rice-improvement strategy. Nat Commun 10(1):2982

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, ** S, Yang X, Min L, Li G, Chen L-L, Zheng H, Lindsey K, Lin Z, Udall JA, Zhang X (2019b) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229

    Article  CAS  PubMed  Google Scholar 

  • Wen T, Wu M, Shen C, Gao B, Zhu D, Zhang X, You C, Lin Z (2018) Linkage and association map** reveals the genetic basis of brown fibre (Gossypium hirsutum). Plant Biotechnol J 16:1654–1666

    Article  CAS  PubMed Central  Google Scholar 

  • Wen T, Dai B, Wang T, Liu X, You C, Lin Z (2019) Genetic variations in plant architecture traits in cotton (Gossypium hirsutum) revealed by a genome-wide association study. Crop J 7:209–216

    Article  Google Scholar 

  • Wen T, Yao T, You C, Lin Z (2020) A case study of a micro-inversion event in dark brown fibre cotton (Gossypium hirsutum). Crop J 8(4):577–585

    Article  Google Scholar 

  • Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8(3):206–216

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Li ZK, Thomson MJ (2012) Molecular breeding in plants: moving into the mainstream. Mol Breeding 29(4):831–832

    Article  Google Scholar 

  • Xu Y, Li P, Yang Z, Xu C (2017) Genetic map** of quantitative trait loci in crops. Crop J 5(2):175–184

    Article  Google Scholar 

  • Yan W, Du M, Zhao W, Li F, Wang X, Eneji AE, Yang F, Huang J, Meng L, Qi H, Xue G, Xu D, Tian X, Li Z (2019) Relationships between plant architecture traits and cotton yield within the plant height range of 80–120 cm desired for mechanical harvesting in the Yellow River Valley of China. Agronomy 9:587

    Article  CAS  Google Scholar 

  • Ye S, Tian C, Liu F, Lu X, Han W, Qi M, Zhang Y, Qiu P, Wu D (2018) Study on the value of early fruiting cotton with limited fruit branches in Changjiang River Basin. China Cotton 45(8):20–23

    Google Scholar 

  • Zhang X, Wang W, Guo N, Zhang Y, Bu Y, Zhao J, ** to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics 19(1):226

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang X, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J, Wang P, Li D, Liu Y, Li Q, Yang F, Zhang YM, Wang G, Li L (2019) QTG-seq accelerates QTL fine map** through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant 12(3):426–437

    Article  PubMed  Google Scholar 

  • Zhu J, Chen J, Gao F, Xu C, Wu H, Chen K, Si Z, Yan H, Zhang T (2017) Rapid map** and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies. J Exp Bot 68(15):4125–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Prof. Zhongxu Lin in Huazhong Agricultural University for providing a platform to analyze the BSA-seq data.

Funding

This work was supported by the National Natural Science Foundation of China (Grant no. 31460362) and Science and Technology Research Project of the Education Department of Jiangxi Province, China (Grant no. GJJ200440).

Author information

Authors and Affiliations

Authors

Contributions

Liangrong He designed this program and performed the experiment. Feiyu Tang and Mengxing Wang revised the manuscript. Tianwang Wen analyzed the data and drafted the manuscript. Chunyan Liu and Tianyou Wang conducted the field investigation. All the authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Tianwang Wen, Feiyu Tang or Liangrong He.

Ethics declarations

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tianwang Wen and Chunyan Liu are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2399 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, T., Liu, C., Wang, T. et al. Genomic map** and identification of candidate genes encoding nulliplex-branch trait in sea-island cotton (Gossypium barbadense L.) by multi-omics analysis. Mol Breeding 41, 34 (2021). https://doi.org/10.1007/s11032-021-01229-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-021-01229-w

Keywords

Navigation