Log in

Investigation of bacterial DNA gyrase Inhibitor classification models and structural requirements utilizing multiple machine learning methods

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Infections from multidrug-resistant (MDR) bacteria have emerged as a paramount global health concern, and the therapeutic effectiveness of current treatments is swiftly diminishing. An urgent need exists to explore innovative strategies for countering drug-resistant bacteria. Bacterial DNA gyrase, functioning as an ATP-dependent enzyme, plays a pivotal role in the intricate processes of transcription, replication, and chromosome segregation within bacterial DNA. This renders it a prime target for the development of innovative antibacterial agents. However, the experimental identification of bacterial DNA gyrase inhibitors faces multifaceted challenges due to current methodological constraints. Recognizing its significance, this study developed 56 computational models designed for predicting bacterial DNA gyrase inhibitors. These models employed seven distinct molecular fingerprints and eight machine learning algorithms. Among these models, Model_2D, created using KlekotaRoth fingerprints and the SVM algorithm, stands out as the most robust performer (ACC = 0.86, MCC = 0.63, G-mean = 0.82). Moreover, given the limited exploration of structural fragments required for DNA Gyrase B inhibitors, crucial structural fingerprints influencing DNA Gyrase B inhibitors were identified through Bayesian classification. Subsequently, we conducted molecular docking to reveal the binding modes between these crucial structural fingerprints and the active site of DNA gyrase B. In conclusion, the present study aimed to develop the optimal classification model for bacterial DNA gyrase inhibitors, offering invaluable support to medicinal chemists creating innovative DNA gyrase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention (U.S.) (2019) Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.)

  3. Boucher HW, Talbot GH, Bradley JS et al (2009) Bad bugs, no drugs: No ESKAPE! an update from the infectious diseases society of America. Clin Infect Dis 48:1–12. https://doi.org/10.1086/595011

    Article  PubMed  Google Scholar 

  4. Dighe SN, Collet TA (2020) Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 199:112326. https://doi.org/10.1016/j.ejmech.2020.112326

    Article  CAS  PubMed  Google Scholar 

  5. Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochemistry 53:1565–1574. https://doi.org/10.1021/bi5000564

    Article  CAS  PubMed  Google Scholar 

  6. Emmerson AM (2003) The quinolones: decades of development and use. J Antimicrob Chemother 51:13–20. https://doi.org/10.1093/jac/dkg208

    Article  CAS  PubMed  Google Scholar 

  7. Barančoková M, Kikelj D, Ilaš J (2018) Recent progress in the discovery and development of DNA gyrase B inhibitors. Future Med Chem. https://doi.org/10.4155/fmc-2017-0257

    Article  PubMed  Google Scholar 

  8. Bisacchi GS, Manchester JI (2015) A new-class antibacterial—almost. Lessons in drug discovery and development: a critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA Gyrase and Topoisomerase IV. ACS Infect Dis 1:4–41. https://doi.org/10.1021/id500013t

    Article  CAS  PubMed  Google Scholar 

  9. Levine C, Hiasa H, Marians KJ (1998) DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochem Biophys Acta 1400:29–43. https://doi.org/10.1016/S0167-4781(98)00126-2

    Article  CAS  PubMed  Google Scholar 

  10. Ghadiri K, Akya A, Elahi A et al (2019) Evaluation of resistance to ciprofloxacin and identification of mutations in topoisomerase genes in Escherichia coli and Klebsiella pneumonia isolated from pediatric urinary tract infections. JPR. https://doi.org/10.4274/jpr.galenos.2019.16362

    Article  Google Scholar 

  11. Peytam F, Norouzbahari M, Saadattalab T et al (2023) Novel fluoroquinolones analogues bearing 4-(arylcarbamoyl)benzyl: design, synthesis, and antibacterial evaluation. Mol Divers. https://doi.org/10.1007/s11030-023-10676-w

    Article  PubMed  Google Scholar 

  12. Norouzbahari M, Salarinejad S, Güran M et al (2020) Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moiety. DARU J Pharm Sci 28:661–672. https://doi.org/10.1007/s40199-020-00373-6

    Article  CAS  Google Scholar 

  13. Lu Y, Vibhute S, Li L et al (2021) Optimization of TopoIV potency, ADMET properties, and hERG inhibition of 5-Amino-1,3-dioxane-linked novel bacterial topoisomerase inhibitors: identification of a Lead with In Vivo Efficacy against MRSA. J Med Chem 64:15214–15249. https://doi.org/10.1021/acs.jmedchem.1c01250

    Article  CAS  PubMed  Google Scholar 

  14. Jakhar R, Khichi A, Kumar D et al (2022) Discovery of novel inhibitors of bacterial DNA gyrase using a QSAR-based approach. ACS Omega 7:32665–32678. https://doi.org/10.1021/acsomega.2c04310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghannam IAY, Abd El-Meguid EA, Ali IH et al (2019) Novel 2-arylbenzothiazole DNA gyrase inhibitors: Synthesis, antimicrobial evaluation, QSAR and molecular docking studies. Bioorg Chem 93:103373. https://doi.org/10.1016/j.bioorg.2019.103373

    Article  CAS  PubMed  Google Scholar 

  16. Jukič M, Ilaš J, Brvar M et al (2017) Linker-switch approach towards new ATP binding site inhibitors of DNA gyrase B. Eur J Med Chem 125:500–514. https://doi.org/10.1016/j.ejmech.2016.09.040

    Article  CAS  PubMed  Google Scholar 

  17. Using SAR and QSAR analysis to model the activity and structure of the quinolone—DNA complex - ScienceDirect. https://www.sciencedirect.com/science/article/pii/0968089696837497?via%3Dihub. Accessed 12 Dec 2023

  18. Lawrence LE, Wu P, Fan L et al (2001) The inhibition and selectivity of bacterial topoisomerases by BMS-284756 and its analogues. J Antimicrob Chemother 48:195–201. https://doi.org/10.1093/jac/48.2.195

    Article  CAS  PubMed  Google Scholar 

  19. Brighty KE, Gootz TD (1997) The chemistry and biological profile of trovafloxacin. J Antimicrob Chemother 39:1–14. https://doi.org/10.1093/jac/39.suppl_2.1

    Article  CAS  PubMed  Google Scholar 

  20. Fang K-C, Chen Y-L, Sheu J-Y et al (2000) Synthesis, antibacterial, and cytotoxic evaluation of certain 7-substituted norfloxacin derivatives. J Med Chem 43:3809–3812. https://doi.org/10.1021/jm000153x

    Article  CAS  PubMed  Google Scholar 

  21. Ma Z, Chu DT, Cooper CS et al (1999) Synthesis and antimicrobial activity of 4H–4-oxoquinolizine derivatives: consequences of structural modification at the C-8 position. J Med Chem 42:4202–4213. https://doi.org/10.1021/jm990191k

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida T, Yamamoto Y, Orita H et al (1996) Studies on quinolone antibacterials. IV. Structure-activity relationships of antibacterial activity and side effects for 5- or 8-substituted and 5,8-disubstituted-7-(3-amino-1-pyrrolidinyl)-1-cyclopropyl-1, 4-dihydro-4-oxoquinoline-3-carboxylic acids. Chem Pharm Bull (Tokyo) 44:1074–1085. https://doi.org/10.1248/cpb.44.1074

    Article  CAS  PubMed  Google Scholar 

  23. Cecchetti V, Fravolini A, Lorenzini MC et al (1996) Studies on 6-aminoquinolones: synthesis and antibacterial evaluation of 6-amino-8-methylquinolones. J Med Chem 39:436–445. https://doi.org/10.1021/jm950558v

    Article  CAS  PubMed  Google Scholar 

  24. Chu DTW, FERNANDESt P, Vojtko C, et al (1989) Structure-activity relationships of the fluoroquinolones. Antimicrob Agents Chemother 33:131–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Structure-activity and structure-side-effect relationships for the quinolone antibacterials | Journal of Antimicrobial Chemotherapy | Oxford Academic. https://academic.oup.com/jac/article-abstract/33/4/685/672331?login=true. Accessed 12 Dec 2023

  26. Emami S, Shafiee A, Foroumadi A (2005) Quinolones: recent structural and clinical developments. IJPR. https://doi.org/10.22037/ijpr.2010.628

    Article  Google Scholar 

  27. Peterson LR (2001) Quinolone molecular structure-activity relationships: what we have learned about improving antimicrobial activity. Clin Infect Dis 33:S180–S186. https://doi.org/10.1086/321846

    Article  CAS  PubMed  Google Scholar 

  28. Lu T, Zhao X, Drlica K (1999) Gatifloxacin activity against quinolone-resistant gyrase: allele-specific enhancement of bacteriostatic and bactericidal activities by the C-8-methoxy group. Antimicrob Agents Chemother 43:2969–2974. https://doi.org/10.1128/AAC.43.12.2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong Y, Xu C, Zhao X et al (1998) Fluoroquinolone action against mycobacteria: effects of C-8 substituents on growth, survival, and resistance. Antimicrob Agents Chemother 42:2978–2984. https://doi.org/10.1128/AAC.42.11.2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abuo-Rahma G, el-DAA, Sarhan HA, Gad GFM, (2009) Design, synthesis, antibacterial activity and physicochemical parameters of novel N-4-piperazinyl derivatives of norfloxacin. Bioorg Med Chem 17:3879–3886. https://doi.org/10.1016/j.bmc.2009.04.027

    Article  CAS  PubMed  Google Scholar 

  31. Mohammed HHH et al (2019) Current trends and future directions of fluoroquinolones. Curr Med Chem 26:3132–3149

    Article  CAS  PubMed  Google Scholar 

  32. Mohammed HHH, Abuo-Rahma GE-DAA, Abbas SH, Abdelhafez E-SMN (2019) Current trends and future directions of fluoroquinolones. CMC 26:3132–3149. https://doi.org/10.2174/0929867325666180214122944

    Article  CAS  Google Scholar 

  33. de Almeida CG, Diniz CG, Silva VL et al (2009) Antibacterial activity of lipophilic fluoroquinolone derivatives. Med Chem 5:419–421. https://doi.org/10.2174/157340609789117859

    Article  PubMed  Google Scholar 

  34. De Sarro A, De Sarro G (2001) Adverse reactions to fluoroquinolones. an overview on mechanistic aspects. Curr Med Chem 8:371–384. https://doi.org/10.2174/0929867013373435

    Article  PubMed  Google Scholar 

  35. Mendez D, Gaulton A, Bento AP et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47:D930–D940. https://doi.org/10.1093/nar/gky1075

    Article  CAS  PubMed  Google Scholar 

  36. Chen X, Liu M, Gilson M (2001) BindingDB: A web-accessible molecular recognition database. CCHTS 4:719–725. https://doi.org/10.2174/1386207013330670

    Article  CAS  Google Scholar 

  37. sklearn.model_selection.train_test_split. In: scikit-learn. https://scikit-learn/stable/modules/generated/sklearn.model_selection.train_test_split.html. Accessed 25 Apr 2023

  38. Yap CW (2011) PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. https://doi.org/10.1002/jcc.21707

    Article  CAS  PubMed  Google Scholar 

  39. Klekota J, Roth FP (2008) Chemical substructures that enrich for biological activity. Bioinformatics 24:2518–2525. https://doi.org/10.1093/bioinformatics/btn479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ewing T, Baber JC, Feher M (2006) Novel 2D fingerprints for ligand-based virtual screening. J Chem Inf Model 46:2423–2431. https://doi.org/10.1021/ci060155b

    Article  CAS  PubMed  Google Scholar 

  41. Batista GEAPA, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor Newsl 6:20–29. https://doi.org/10.1145/1007730.1007735

    Article  Google Scholar 

  42. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell 16:321–357. https://doi.org/10.1613/jair.953

    Article  Google Scholar 

  43. Swana EF, Doorsamy W, Bokoro P (2022) Tomek Link and SMOTE approaches for machine fault classification with an imbalanced dataset. Sensors 22:3246. https://doi.org/10.3390/s22093246

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3–31. https://doi.org/10.1016/S0167-7012(00)00201-3

    Article  CAS  PubMed  Google Scholar 

  45. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling | Journal of Chemical Information and Modeling. https://pubs.acs.org/doi/https://doi.org/10.1021/ci034160g. Accessed 25 Apr 2023

  46. Bouboulis P, Theodoridis S, Mavroforakis C, Evaggelatou-Dalla L (2015) Complex support vector machines for regression and quaternary classification. IEEE Trans Neural Netw Learning Syst 26:1260–1274. https://doi.org/10.1109/TNNLS.2014.2336679

    Article  MathSciNet  Google Scholar 

  47. LightGBM | Proceedings of the 31st International Conference on Neural Information Processing Systems. https://dl.acm.org/doi/https://doi.org/10.5555/3294996.3295074. Accessed 4 Apr 2023

  48. Plewczynski D, Spieser SAH, Koch U (2006) Assessing different classification methods for virtual screening. J Chem Inf Model 46:1098–1106. https://doi.org/10.1021/ci050519k

    Article  CAS  PubMed  Google Scholar 

  49. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13:21–27. https://doi.org/10.1109/TIT.1967.1053964

    Article  Google Scholar 

  50. Cox DR (1958) The regression analysis of binary sequences. J Roy Stat Soc: Ser B (Methodol) 20:215–232. https://doi.org/10.1111/j.2517-6161.1958.tb00292.x

    Article  MathSciNet  Google Scholar 

  51. XGBoost | Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://dl.acm.org/doi/https://doi.org/10.1145/2939672.2939785. Accessed 25 Apr 2023

  52. Theodoridis S (2015) Machine Learning: A Bayesian and Optimization Perspective, 1st edn. Academic Press Inc, USA

    Google Scholar 

  53. Amin SA, Adhikari N, Jha T (2020) Exploration of histone deacetylase 8 inhibitors through classification QSAR study: Part II. J Mol Struct 1204:127529. https://doi.org/10.1016/j.molstruc.2019.127529

    Article  CAS  Google Scholar 

  54. Trott O, Olson AJ (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yuan S, Chan HCS, Hu Z (2017) Using PyMOL as a platform for computational drug design. WIREs Comput Mol Sci 7:e1298. https://doi.org/10.1002/wcms.1298

    Article  CAS  Google Scholar 

  57. Shen J, Cheng F, Xu Y et al (2010) Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model 50:1034–1041. https://doi.org/10.1021/ci100104j

    Article  CAS  PubMed  Google Scholar 

  58. Rücker C, Rücker G, Meringer M (2007) y-Randomization and its variants in QSPR/QSAR. J Chem Inf Model 47:2345–2357. https://doi.org/10.1021/ci700157b

    Article  CAS  PubMed  Google Scholar 

  59. Design and Biological Evaluation of Furan/Pyrrole/Thiophene‐2‐carboxamide Derivatives as Efficient DNA GyraseB Inhibitors of Staphylococcus aureus - Janupally - 2015 - Chemical Biology & Drug Design - Wiley Online Library. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/cbdd.12529. Accessed 13 Dec 2023

  60. Janupally R, Jeankumar VU, Bobesh KA et al (2014) Structure-guided design and development of novel benzimidazole class of compounds targeting DNA gyraseB enzyme of Staphylococcus aureus. Bioorg Med Chem 22:5970–5987. https://doi.org/10.1016/j.bmc.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  61. Cross JB, Zhang J, Yang Q et al (2016) Discovery of pyrazolopyridones as a novel class of gyrase B inhibitors using structure guided design. ACS Med Chem Lett 7:374–378. https://doi.org/10.1021/acsmedchemlett.5b00368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Durcik M et al (2018) New N-phenylpyrrolamide DNA gyrase B inhibitors: Optimization of efficacy and antibacterial activity. Eur J Med Chem 154:117–132. https://doi.org/10.1016/j.ejmech.2018.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang J, Yang Q, Cross JB et al (2015) Discovery of azaindole ureas as a novel class of bacterial gyrase B inhibitors. J Med Chem 58:8503–8512. https://doi.org/10.1021/acs.jmedchem.5b00961

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Acknowledgement: This work is financially supported by the National Science and Technology Major Project of China (Grant No. 2019ZX09201004-001), and the National Natural Science Foundation of China (Grant No. 81530100 and Grant No. U1603285).

Funding

This article was funded by National Science and Technology Major Project of China, Grant No. 2019ZX09201004-001, Grant No. 2019ZX09201004-001, National Natural Science Foundation of China, Grant No. 81530100 and Grant No. U1603285, Grant No. 81530100 and Grant No. U1603285.

Author information

Authors and Affiliations

Authors

Contributions

Guozheng Guo: Conceptualization, Formal analysis, Data Curation, Writing - Original Draft, Visualization Yan Li: Writing - Review & Editing, Funding acquisition

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 716 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Li, Y. Investigation of bacterial DNA gyrase Inhibitor classification models and structural requirements utilizing multiple machine learning methods. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10806-y

Keywords

Navigation