Log in

Fluorinated 2-arylchroman-4-ones and their derivatives: synthesis, structure and antiviral activity

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A number of new biologically interesting fluorinated 2-arylchroman-4-ones and their 3-arylidene derivatives were synthesized based on the p-toluenesulfonic acid-catalyzed one-pot reaction of 2-hydroxyacetophenones with benzaldehydes. It was found that obtained (E)-3-arylidene-2-aryl-chroman-4-ones reacted with malononitrile under base conditions to form 4,5-diaryl-4H,5H-pyrano[3,2-c]chromenes. The structures of the synthesized fluorinated compounds were confirmed by 1H, 19F, and 13C NMR spectral data, and for some representatives of heterocycles also using NOESY spectra and X-ray diffraction analysis. A large series of obtained flavanone derivatives as well as products of their modification (35 examples) containing from 1 to 12 fluorine atoms in the structure was tested in vitro for cytotoxicity in MDCK cell line and for antiviral activity against influenza A virus. Among the studied heterocycles 6,8-difluoro-2-(4-(trifluoromethyl)phenyl)chroman-4-one (IC50 = 6 μM, SI = 150) exhibited the greatest activity against influenza A/Puerto Rico/8/34 (H1N1) virus. Moreover, this compound appeared active against phylogenetically distinct influenza viruses, A(H5N2) and influenza B (SI’s of 53 and 42, correspondingly). The data obtained suggest that the fluorinated derivatives of 2-arylchroman-4-ones are prospective scaffolds for further development of potent anti-influenza antivirals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martens S, Mithöfer A (2005) Molecules of interest flavones and flavone synthases. Phytochem 66:2399–2407. https://doi.org/10.1016/j.phytochem.2005.07.013

    Article  CAS  Google Scholar 

  2. Kshatriya R, Jejurkar VP, Saha S (2018) In memory of Prof. Venkataraman: recent advances in the synthetic methodologies of flavones. Tetrahedron 74:811–833. https://doi.org/10.1016/j.tet.2017.12.052

    Article  CAS  Google Scholar 

  3. JrE M (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182. https://doi.org/10.1007/978-1-4615-5335-9_13

    Article  Google Scholar 

  4. Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, Lagana G, Daglia M, Meneghini S, Nabavi SM (2017) Flavanones: citrus phytochemical with health-promoting properties. BioFactors 43:495–506. https://doi.org/10.1002/biof.1363

    Article  CAS  PubMed  Google Scholar 

  5. Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23:519–534. https://doi.org/10.1002/med.10033

    Article  CAS  PubMed  Google Scholar 

  6. Peterson J, Dwyer J (1998) Flavonoids: dietary occurrence and biochemical activity. J Nutrition Res 18:1995–2018. https://doi.org/10.1016/S0271-5317(98)00169-9

    Article  CAS  Google Scholar 

  7. Middleton E, Kandaswami C (1992) Effect of flavonoids on immune and inflammatory cell function. Biochem Pharmacol 43:1167–1179. https://doi.org/10.1016/0006-2952(92)90489-6

    Article  CAS  PubMed  Google Scholar 

  8. Mulvihill EE, Huff MW (2010) Antiatherogenic properties of flavonoids: implications for cardiovascular health. Can J Cardiol 26:17A-21A. https://doi.org/10.1016/s0828-282x(10)71056-4

    Article  CAS  PubMed  Google Scholar 

  9. Pone BK, Ferreira EI (2019) Flavones as a privileged scaffold in drug discovery: current developments. Curr Org Synth 16:968–1001. https://doi.org/10.2174/1570179416666190719125730

    Article  CAS  Google Scholar 

  10. Singh M, Silakari O (2018) Chapter 4—flavone an important scaffold for medicinal chemistry. Key Heterocycle Cores Des Multitargeting Mol. https://doi.org/10.1016/B978-0-08-102083-8.00004-2

    Article  Google Scholar 

  11. Joseph L, George M, Kassaye G (2008) One pot method for the synthesis of arylidene flavanones and some of its activities. African J Clin Exp Microbiol 9:147–151. https://doi.org/10.4314/ajcem.v9i3.7499

    Article  Google Scholar 

  12. Zheng M, Lu S, **ng J (2021) Enhanced antioxidant, anti-inflammatory and α-glucosidase inhibitory activities of citrus hesperidin by acid-catalyzed hydrolysis. Food Chem 336:127539. https://doi.org/10.1016/j.foodchem.2020.127539

    Article  CAS  PubMed  Google Scholar 

  13. Foroumadi A, Samzadeh-Kermani A, Emami S, Dehghan G, Sorkhi M, Arabsorkhi F, Heidari MR, Abdollahi M, Shafiee A (2007) Synthesis and antioxidant properties of substituted 3-benzylidene-7-alkoxychroman-4-ones. Bioorg Med Chem Lett 17:6764–6769. https://doi.org/10.1016/j.bmcl.2007.10.034

    Article  CAS  PubMed  Google Scholar 

  14. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042. https://doi.org/10.1021/np9904509

    Article  CAS  PubMed  Google Scholar 

  15. Rosa GP, Seca AML, Barreto MC, Silva AMS, Pinto DCGA (2019) Chalcones and flavanones bearing hydroxyl and/or methoxyl groups: synthesis and biological assessments. Appl Sci 9:2846. https://doi.org/10.3390/app9142846

    Article  CAS  Google Scholar 

  16. Zeng J, Hu W, Li H, Liu J, Zhang P, Gu Y, Yu Y, Wang W, Wei Y (2021) Purification of linarin and hesperidin from Mentha haplocalyx by aqueous two-phase flotation coupled with preparative HPLC and evaluation of the neuroprotective effect of linarin. J Sep Sci 44:2496–2503. https://doi.org/10.1002/jssc.202001243

    Article  CAS  PubMed  Google Scholar 

  17. Itoh K, Masuda M, Naruto S, Murata K, Matsuda H (2009) Antiallergic activity of unripe Citrus hassaku fruits extract and its flavanone glycosides on chemical substance-induced dermatitis in mice. J Nat Med 63:443–450. https://doi.org/10.1007/s11418-009-0349-1

    Article  CAS  PubMed  Google Scholar 

  18. Agrawal YO, Sharma PK, Shrivastava B, Ojha S, Upadhya HM, Arya DS, Goyal SN (2014) Hesperidin produces cardioprotective activity via PPAR-γ pathway in ischemic heart disease model in diabetic rats. PLoS ONE. https://doi.org/10.1371/journal.pone.0111212

    Article  PubMed  PubMed Central  Google Scholar 

  19. Le Bail JC, Pouget C, Fagnere C, Basly JP, Chulia AJ, Habrioux G (2001) Chalcones are potent inhibitors of aromatase and 17β-hydroxysteroid dehydrogenase activities. Life Sci 68:751–761. https://doi.org/10.1016/s0024-3205(00)00974-7

    Article  PubMed  Google Scholar 

  20. Zheng Y, Wang K, Wu Y, Chen Y, Chen X, Hu CW, Hu F (2018) Pinocembrin induces ER stress mediated apoptosis and suppresses autophagy in melanoma cells. Cancer Lett 431:31–42. https://doi.org/10.1016/j.canlet.2018.05.026

    Article  CAS  PubMed  Google Scholar 

  21. Pouget C, Lauthier F, Simon A, Fagnere C, Basly JP, Delage C, Chulia AJ (2001) Flavonoids: structural requirements for antiproliferative activity on breast cancer cells. Bioorg Med Chem Lett 11:3095–3097. https://doi.org/10.1016/s0960-894x(01)00617-5

    Article  CAS  PubMed  Google Scholar 

  22. Kollár P, Bárta T, Závalová V, Smejkal K, Hampl A (2011) Geranylated flavanone tomentodiplacone B inhibits proliferation of human monocytic leukaemia (THP-1) cells. Br J Pharmacol 162:1534–1541. https://doi.org/10.1111/j.1476-5381.2010.01171.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pouget C, Fagnere C, Basly J-P, Habrioux G, Chulia A-J (2002) New aromatase inhibitors. Synthesis and inhibitory activity of pyridinyl-substituted flavanone derivatives. Bioorg Med Chem Lett 12:1059–1061. https://doi.org/10.1016/s0960-894x(02)00072-0

    Article  CAS  PubMed  Google Scholar 

  24. Kupcewicz B, Balcerowska-Czerniak G, Małecka M, Paneth P, Krajewska U, Rozalski M (2013) Structure–cytotoxic activity relationship of 3-arylideneflavanone and chromanone (E, Z isomers) and 3-arylflavones. Bioorg Med Chem Lett 23:4102–4106. https://doi.org/10.1016/j.bmcl.2013.05.044

    Article  CAS  PubMed  Google Scholar 

  25. Adamus-Grabicka AA, Markowicz-Piasecka M, Cieślak M, Królewska-Golińsk K, Hikisz P, Kusz J, Małecka M, Budzisz E (2020) Biological evaluation of 3-benzylidenechromanones and their spiropyrazolines-based analogues. Molecules 25:1613. https://doi.org/10.3390/molecules25071613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang S, Zhao Y, Zhou X, Wu Y, Wu P, Liu T, Yang B, Hu Y, Dong X (2012) Design, synthesis and biological evaluation of 3-benzylideneflavanone derivatives as cytotoxic agents. Med Chem Res 21:4150–4157. https://doi.org/10.1007/s00044-011-9959-8

    Article  CAS  Google Scholar 

  27. Farmer RL, Biddle MM, Nibbs AE, Huang X, Bergan RC, Scheidt KA (2010) Concise syntheses of the abyssinones and discovery of new inhibitors of prostate cancer and MMP-2 expression. ACS Med Chem Lett 1:400–405. https://doi.org/10.1021/ml100110x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramesh E, Alshatwi AA (2013) Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol 51:97–105. https://doi.org/10.1016/j.fct.2012.07.033

    Article  CAS  PubMed  Google Scholar 

  29. Kondhare DD, Gyananath G, Tamboli Y, Kumbhar SS, Choudhari PB, Bhatia MS, Zubaidha PK (2017) An efficient synthesis of flavanones and their docking studies with aldose reductase. Med Chem Res 26:987–998. https://doi.org/10.1007/s00044-017-1813-1

    Article  CAS  Google Scholar 

  30. Chahar MK, Sharma N, Dobhal MP, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5:1–12. https://doi.org/10.4103/0973-7847.7909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Safavi M, Esmati N, Ardestani SK, Emami S, Ajdari S, Davoodi J, Shafiee A, Foroumadi A (2012) Halogenated flavanones as potential apoptosis-inducing agents: synthesis and biological activity evaluation. Eur J Med Chem 58:573–580. https://doi.org/10.1016/j.ejmech.2012.10.043

    Article  CAS  PubMed  Google Scholar 

  32. Patel JM, Soman SS (2008) Studies in synthesis of furoflavones possessing anti-cancer activity. J Heterocycl Chem 45:1729–1738. https://doi.org/10.1002/jhet.5570450626

    Article  CAS  Google Scholar 

  33. Zheng Y, Pu W, Li J, Shen X, Zhou Q, Fan X, Yang S-Y, Yu Y, Chen Q, Wang C, Wu X, Peng Y (2019) Discovery of a prenylated flavonol derivative as a Pin1 inhibitor to suppress hepatocellular carcinoma by modulating MicroRNA biogenesis. Chem Asian J 14:130–134. https://doi.org/10.1002/asia.201801461

    Article  CAS  PubMed  Google Scholar 

  34. Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M (2021) Antiviral activities of flavonoids. Biomed Pharmacother 140:111596. https://doi.org/10.1016/j.biopha.2021.111596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moorthy NSHN, Singh RJ, Singh HP, Gupta SD (2006) Synthesis, biological evaluation and in silico metabolic and toxicity prediction of some flavanone derivatives. Chem Pharm Bull (Tokyo) 54:1384–1390. https://doi.org/10.1248/cpb.54.1384

    Article  CAS  PubMed  Google Scholar 

  36. Céliz G, Daz M, Audisio MC (2011) Antibacterial activity of naringin derivatives against pathogenic strains. J Appl Microbiol 111:731–738. https://doi.org/10.1111/j.1365-2672.2011.05070.x

    Article  CAS  PubMed  Google Scholar 

  37. Puranik NV, Rani R, Singh VA, Tomar S, Puntambekar HM, Srivastava P (2019) Evaluation of the antiviral potential of halogenated dihydrorugosaflavonoids and molecular modeling with nsP3 protein of Chikungunya virus (CHIKV). ACS Omega 4:20335–20345. https://doi.org/10.1021/acsomega.9b02900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee JL, Loe MWC, Lee RCH, Chu JJH (2019) Antiviral activity of pinocembrin against Zika virus replication. Antivir Res 167:13–24. https://doi.org/10.1016/j.antiviral.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  39. Galochkina AV, Anikin VB, Babkin VA, Ostrouhova LA, Zarubaev VV (2016) Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis. Arch Virol 161:929–938. https://doi.org/10.1007/s00705-016-2749-3

    Article  CAS  PubMed  Google Scholar 

  40. Nahmias Y, Goldwasser J, Casali M, van Poll D, Wakita T, Chung RT, Yarmush ML (2008) Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 47:1437–1445. https://doi.org/10.1002/hep.22197

    Article  CAS  PubMed  Google Scholar 

  41. Mukhtar S, Alsharif MA, Alahmdi MI, Parveen H, Khan AU (2018) Retracted: novel spiro-thiazolidin-4-one and thioether derivatives of benzylidene flavanones: new leads in cancer and microbial chemotherapy. Arch Pharm (Weinheim). https://doi.org/10.1002/ardp.201700397

    Article  PubMed  Google Scholar 

  42. Isanbor C, O’Hagan D (2006) Fluorine in medicinal chemistry: a review of anti-cancer agents. J Fluor Chem 127:303–319. https://doi.org/10.1016/j.jfluchem.2006.01.011

    Article  CAS  Google Scholar 

  43. JrRW D (2005) Fluorine chemistry at the millennium. J Fluor Chem 126:157–163. https://doi.org/10.1016/j.jfluchem.2004.09.033

    Article  CAS  Google Scholar 

  44. Gakh AA, Burnett MN (2011) Extreme modulation properties of aromatic fluorine. J Fluor Chem 132:88–93. https://doi.org/10.1016/j.jfluchem.2010.11.009

    Article  CAS  Google Scholar 

  45. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 114:2432–2506. https://doi.org/10.1021/cr4002879

    Article  CAS  PubMed  Google Scholar 

  46. Swallow S (2015) Fluorine in medicinal chemistry. Prog Med Chem 54:65–133. https://doi.org/10.1016/bs.pmch.2014.11.001

    Article  PubMed  Google Scholar 

  47. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330. https://doi.org/10.1039/B610213C

    Article  CAS  PubMed  Google Scholar 

  48. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) Applications of fluorine in medicinal chemistry. J Med Chem 58:8315–8359. https://doi.org/10.1021/acs.jmedchem.5b00258

    Article  CAS  PubMed  Google Scholar 

  49. Johnson BM, Shu Y-Z, Zhuo X, Meanwell NA (2020) Metabolic and pharmaceutical aspects of fluorinated compounds. J Med Chem 63:6315–6386. https://doi.org/10.1021/acs.jmedchem.9b01877

    Article  CAS  PubMed  Google Scholar 

  50. Morgenthaler M, Aebi JD, Grüninger F, Mona D, Wagner B, Kansy M, Diederich F (2008) A fluorine scan of non-peptidic inhibitors of neprilysin: fluorophobic and fluorophilic regions in an enzyme active site. J Fluor Chem 129:852–865. https://doi.org/10.1016/j.jfluchem.2008.02.004

    Article  CAS  Google Scholar 

  51. Murphy CD, Sandford G (2015) Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 11:589–599. https://doi.org/10.1517/17425255.2015.1020295

    Article  CAS  PubMed  Google Scholar 

  52. Jäckel C, Koksch B (2005) Fluorine in peptide design and protein engineering. Eur J Org Chem. https://doi.org/10.1002/ejoc.200500205

    Article  Google Scholar 

  53. Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G (2012) The fluorous effect in biomolecular applications. Chem Soc Rev 41:31–42. https://doi.org/10.1039/C1CS15084G

    Article  CAS  PubMed  Google Scholar 

  54. Müller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Science 317:1881–1886. https://doi.org/10.1126/science.1131943

    Article  CAS  PubMed  Google Scholar 

  55. Conti C, Mastromarino P, Goldoni P, Portalone G, Desideri N (2005) Synthesis and anti-rhinovirus properties of fluoro-substituted flavonoids. Antivir Chem Chemother 16:267–276. https://doi.org/10.1177/095632020501600406

    Article  CAS  PubMed  Google Scholar 

  56. Emami S, Ghanbarimasir Z (2015) Recent advances of chroman-4-one derivatives: synthetic approaches and bioactivities. Eur J Med Chem 93:539–563. https://doi.org/10.1016/j.ejmech.2015.02.048

    Article  CAS  PubMed  Google Scholar 

  57. Lee JI (2022) A review of the syntheses of flavanones, thioflavanones, and azaflavanones from 2’-substituted chalcones. Bull Korean Chem Soc 43:117–128. https://doi.org/10.1002/bkcs.12439

    Article  CAS  Google Scholar 

  58. Miura M, Shigematsu K, Toriyama M, Motohashi S (2021) Convenient synthesis of flavanone derivatives via oxa-Michael addition using catalytic amount of aqueous cesium fluoride. Tetrahedron Lett 85:153480. https://doi.org/10.1016/j.tetlet.2021.153480

    Article  CAS  Google Scholar 

  59. He Q, So CM, Bian Z, Hayashi T, Wang J (2015) Rhodium/chiral diene-catalyzed asymmetric 1,4-addition of arylboronic acids to chromones: a highly enantioselective pathway for accessing chiral flavanones. Chem Asian J 10:540–543. https://doi.org/10.1002/asia.201403290

    Article  CAS  PubMed  Google Scholar 

  60. Yoo H-S, Son SH, Cho YY, Lee SJ, Jang HJ, Kim YM, Kim DH, Kim NY, Park BY, Lee YS, Kim N-J (2019) Synthesis of flavanones via palladium(II)-catalyzed one-pot β-arylation of chromanones with arylboronic acids. J Org Chem 84:10012–10023. https://doi.org/10.1021/acs.joc.9b01162

    Article  CAS  PubMed  Google Scholar 

  61. Wang L, Liu X, Dong Z, Fu X, Feng X (2008) Asymmetric intramolecular oxa-Michael addition of activated α, β-unsaturated ketones catalyzed by a chiral N, N’-dioxide nickel(II) complex: highly enantioselective synthesis of flavanones. Angew Chem Int Ed 47:8670–8673. https://doi.org/10.1002/anie.200803326

    Article  CAS  Google Scholar 

  62. Dubrovskiy AV, Larock RC (2010) Intermolecular C–O addition of carboxylic acids to arynes. Org Lett 12:3117–3119. https://doi.org/10.1021/ol101017z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hodgetts KJ (2005) Inter- and intramolecular Mitsunobu reaction based approaches to 2-substituted chromans and chroman-4-ones. Tetrahedron 61:6860–6870. https://doi.org/10.1016/j.tet.2005.04.047

    Article  CAS  Google Scholar 

  64. Politanskaya L, Wang J, Troshkova N, Chuikov I, Bagryanskaya I (2022) One-pot synthesis of fluorinated 2-arylchroman-4-one derivatives from 2-(triisopropylsilyl)ethynylphenols and aromatic aldehydes. J Fluor Chem 263:110045. https://doi.org/10.1016/j.jfluchem.2022.110045

    Article  CAS  Google Scholar 

  65. Chen P-Y, Wang T-P, Chiang MY, Huang K-S, Tzeng C-C, Chen Y-L, Wang E-C (2011) Environmentally benign syntheses of flavanones. Tetrahedron 67:4155–4160. https://doi.org/10.1016/j.tet.2011.04.070

    Article  CAS  Google Scholar 

  66. Chan W, Zhang W, Lin Y, Szeto Y, Lin Y, Yeung C (1997) Synthesis of hydroxyflavanones from substituted acetophenones and benzaldehydes in the presence of silica gel, boric acid and piperidine. Heterocycl 45:71–75. https://doi.org/10.3987/COM-96-7611

    Article  Google Scholar 

  67. Fridén-Saxin M, Seifert T, Landergren MR, Suuronen T, Lahtela-Kakkonen M, Jarho EM, Luthman K (2012) Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors. J Med Chem 55:7104–7113. https://doi.org/10.1021/jm3005288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chandrasekhar S, Vijeender K, Reddy KV (2005) New synthesis of flavanones catalyzed by L-proline. Tetrahedron Lett 46:6991–6993. https://doi.org/10.1016/j.tetlet.2005.08.066

    Article  CAS  Google Scholar 

  69. Albogami AS, Karama U, Mousa AA, Khan M, Al-Mazroa SA, Alkhathlan HZ (2012) Simple and efficient one step synthesis of functionalized flavanones and chalcones. Orient J Chem 28:619–626. https://doi.org/10.13005/ojc/280201

    Article  CAS  Google Scholar 

  70. Santoso KT, Brett MW, Cheung C-Y, Cook GM, Stocker BL, Timmer MSM (2020) Synthesis of functionalised chromonyl-pyrimidines and their potential as antimycobacterial agents. ChemistrySelect 5:4347–4355. https://doi.org/10.1002/slct.202000799

    Article  CAS  Google Scholar 

  71. Vashishtha M, Mishra M, Shah DO (2015) Study on catalytic property of NaOH-cationic surfactant solutions for efficient, green and selective synthesis of flavanone. J Mol Liq 210:151–159. https://doi.org/10.1016/j.molliq.2015.02.017

    Article  CAS  Google Scholar 

  72. Széll T, Unyl REM (1963) Condensation of hydroxynitroacetophenones with aromatic aldehydes in the presence of hydrogen chloride. J Org Chem 28:1146–1147. https://doi.org/10.1021/jo01039a515

    Article  Google Scholar 

  73. Yang L, Wang E, Fan Y, Yang J, Luo Z, Wang Y, Peng M, Deng T, Yang X (2020) One-pot synthesis of (E)-3-benzylideneflavanones from 2-hydroxyacetophenones and aromatic aldehydes. Tetrahedron Let 61:151180. https://doi.org/10.1016/j.tetlet.2019.151180

    Article  CAS  Google Scholar 

  74. Chate AV, Nikam MD, Mahajan PS, Mohekar SR, Gill CH (2012) Synthesis and antimicrobial screening of novel 2-(5-(4-(allyloxy)-3-methoxyphenyl)-1H-pyrazol-3-yl)phenols analogues of 2-(4-(allyloxy)-3-methoxyphenyl)-4H-chromen-4-ones. Org Commun 5:83–98

    CAS  Google Scholar 

  75. Politanskaya L, Rybalova T, Zakharova O, Nevinsky G, Tretyakov E (2018) p-Toluenesulfonic acid mediated one-pot cascade synthesis and cytotoxicity evaluation of polyfluorinated 2-aryl-2,3-dihydroquinolin-4-ones and their derivatives. J Fluor Chem 211:129–140. https://doi.org/10.1016/j.jfluchem.2018.04.005

    Article  CAS  Google Scholar 

  76. Katiyar MK, Dhakad GK, Arora SS, Bhagat S, Arora T, Kumar R (2022) Synthetic strategies and pharmacological activities of chromene and its derivatives: an overview. J Mol Structure. https://doi.org/10.1016/j.molstruc.2022.1330125

    Article  Google Scholar 

  77. Sameem B, Saeedi M, Mahdavi M, Nadri H, Moghadam FH, Edraki N, Khan MI, Amini M (2017) Synthesis, docking study and neuroprotective effects of some novel pyrano[3,2- c]chromene derivatives bearing morpholine/phenylpiperazine moiety. Bioorg Med Chem 25:3980–3988. https://doi.org/10.1016/j.bmc.2017.05.043

    Article  CAS  PubMed  Google Scholar 

  78. El-Agrody AM, Fouda AM, Assiri MA, Mora A, Ali TE, Alam MM, Alfaifi MY (2020) In vitro anticancer activity of pyrano[3,2-c]chromene derivatives with both cell cycle arrest and apoptosis induction. Med Chem Res 29:617–629. https://doi.org/10.1007/s00044-019-02494-3

    Article  CAS  Google Scholar 

  79. Abdella AM, Moatasim Y, Ali MA, Elwahy AHM, Abdelhamid IA (2017) Synthesis and anti-influenza virus activity of novel bis(4H-chromene-3-carbonitrile) derivatives. J Heterocyclic Chem 54:1854–1862. https://doi.org/10.1002/jhet.27763

    Article  CAS  Google Scholar 

  80. Ren Q, Gao Y, Wang J (2010) Enantioselective synthesis of densely functionalized pyranochromenes via an unpredictable cascade Michael–Oxa-Michael–tautomerization sequence. Chem Eur J 16:13594–13598. https://doi.org/10.1002/chem.201002490

    Article  CAS  PubMed  Google Scholar 

  81. Wang X, Liu M, Chen Z (2016) Brønsted-acid catalyzed cascade annulations toward the fused pyranoquinoline derivatives. Tetrahedron 72:4423–4426. https://doi.org/10.1016/j.tet.2016.06.004

    Article  CAS  Google Scholar 

  82. Vereshchagin AN, Elinson MN, Nasybullin RF, Ryzhkov FV, Bobrovsky SI, Bushmarinov IS, Egorov MP (2015) One-pot “on-solvent” multicomponent protocol for the synthesis of medicinally relevant 4H-pyrano[3,2-c]quinoline scaffold. Helv Chim Acta 98:1104–1114. https://doi.org/10.1002/hlca.201500026

    Article  CAS  Google Scholar 

  83. Bagchi S, Monga A, Kumar S, Deeksha SA (2018) DABCO-catalysed one-pot eco-friendly synthetic strategies for accessing pyranochromenone and bis(benzochromenone) compounds. ChemistrySelect 3:12830–12835. https://doi.org/10.1002/slct.201803477

    Article  CAS  Google Scholar 

  84. Khurana JM, Nand B, Saluja P (2010) DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium. Tetrahedron 66:5637–5641. https://doi.org/10.1016/j.tet.2010.05.082

    Article  CAS  Google Scholar 

  85. Ziarani GM, Badiei A, Azizi M, Zarabadi P (2011) Synthesis of 3,4-dihydropyrano[c]chromene derivatives using sulfonic acid functionalized silica (SiO2PrSO3H). Iran J Chem Chem Eng 30:59–65. https://doi.org/10.30492/IJCCE.2011.6286

    Article  Google Scholar 

  86. Allen FH, Kenard O, Watson DG, Bramer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1–S19. https://doi.org/10.1039/P298700000S1

    Article  Google Scholar 

  87. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  88. Zakharova O, Nevinsky G, Politanskaya L, Baev D, Ovchinnikova L, Tretyakov E (2019) Evaluation of antioxidant activity and cytotoxicity of polyfluorinated diarylacetylenes and indoles toward human cancer cells. J Fluor Chem 226:109353. https://doi.org/10.1016/j.jfluchem.2019.109353

    Article  CAS  Google Scholar 

  89. Kashyap B, Phukan P (2013) A new ferrocene-based bulky pyridine as an efficient reusable homogeneous catalyst. RSC Adv 3:15327–15336. https://doi.org/10.1039/C3RA41674G

    Article  CAS  Google Scholar 

  90. Gondo K, Oyamada J, Kitamura T (2015) Palladium-catalyzed desilylative acyloxylation of silicon-carbon bonds on (trimethylsilyl)arenes: synthesis of phenol derivatives from trimethylsilylarenes. Org Lett 17:4778–4781. https://doi.org/10.1021/acs.orglett.5b02336

    Article  CAS  PubMed  Google Scholar 

  91. **n F, Du C, Lan G, Wu Z (2013) Synthesis, characterization, and agricultural biological activities of 5-fluoro-2-hydroxy butyrophenone. J Chem 52:405–407. https://doi.org/10.1155/2013/895892

    Article  CAS  Google Scholar 

  92. Wang N-X, Yu A-G, Wang G-X, Zhang X-H, Li Q-S, Li Z (2007) Synthesis of (S, R, R, R)-α, α’-iminobis(methylene)bis(6-fluoro-3H,4H-dihydro2H-1-benzopyran-2-methanol). Synthesis 8:1154–1158. https://doi.org/10.1055/s-2007-965993

    Article  CAS  Google Scholar 

  93. Kashid BB, Salunkhe PH, Dongare BB, More KR, Khedkar VM, Ghanwat AA (2020) Synthesis of novel of 2,5-disubstituted 1,3,4-oxadiazole derivatives and their in vitro antiinflammatory, anti-oxidant evaluation, and molecular docking study. Bioorg Med Chem Lett 30:127136. https://doi.org/10.1016/j.bmcl.2020.127136

    Article  CAS  PubMed  Google Scholar 

  94. Politanskaya L, Tretyakov E, ** C (2020) Synthesis of polyfluorinated o-hydroxyacetophenones—convenient precursors of 3-benzylidene-2-phenylchroman-4-ones. J Fluor Chem. https://doi.org/10.1016/j.jfluchem.2019.109435

    Article  Google Scholar 

  95. Muller BM, Mai J, Yocum RA, Adle MJ (2014) Impact of mono- and disubstitution on the colorimetric dynamic covalent switching chalcone/flavanone scaffold. Org Biomol Chem 12:5108–5114. https://doi.org/10.1039/C4OB00398E

    Article  CAS  PubMed  Google Scholar 

  96. Lowes DJ, Guiguemde WA, Connelly MC, Zhu F, Sigal MS, Clark JA, Lemoff AS, Derisi JL, Wilson EB, Guy RK (2011) Optimization of propafenone analogues as antimalarial leads. J Med Chem 54:7477–7485. https://doi.org/10.1021/jm2005546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang E, Yang L, Yang Q, Yang F, Luo J, Gan M, Wang X, Song S, Lei Y, Yang X (2022) Polyphosphoric acid-promoted one-pot synthesis and neuroprotectiveeffects of flavanones against NMDA-induced injury in PC12 cells. RSA Adv 12:28098–28103. https://doi.org/10.1039/D2RA03562F

    Article  CAS  Google Scholar 

  98. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  99. SADABS (2008) 2008–1, Bruker AXS, Madison, WI, USA

  100. Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13. https://doi.org/10.1107/S0021889802022112

    Article  CAS  Google Scholar 

  101. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Stree J (2006) Mercury: visualization and analysis of crystal structures. J Appl Cryst 39:453–457. https://doi.org/10.1107/S002188980600731X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Multi-Access Chemical Service Center SB RAS for spectral and analytical measurements, and the Russian Science Foundation (Project No. 23-23-00008) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

NT: methodology, chemical experiments performing, writing—original draft preparation; LP: conceptualization, methodology, chemical experiments performing, writing—review and editing, funding acquisition, supervision, project administration; IB: RSA investigation, Writing—original draft preparation; IC: NMR investigation, Writing—original draft preparation; JW: chemical experiments performing; PI: biological experiments performing; MM: biological experiments performing; IE: biological experiments performing; AV: biological experiments performing; VZ: methodology, biological experiments performing, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Larisa Politanskaya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6988 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troshkova, N., Politanskaya, L., Bagryanskaya, I. et al. Fluorinated 2-arylchroman-4-ones and their derivatives: synthesis, structure and antiviral activity. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10769-6

Keywords

Navigation